Recursion
Sort Algorithms

CS 16: Solving Problems with Computers |
Lecture #17

Ziad Matni
Dept. of Computer Science, UCSB

FINAL EXAM IS COMING! DeC 12!

e Material: Everything we’ve done
— Homework, Labs, Lectures, Textbook

* Tuesday, 12/12 in this classroom
e Starts at 4:00pm **SHARP** (come early)
* Ends at 7:00pm **SHARP**
e BRING YOUR STUDENT IDs WITH YOU!!!
e Closed book: no calculators, no phones, no computers
* Only 1 sheet (double-sided ok) of written notes

— Must be no bigger than 8.5” x 11”

— You have to turn it in with the exam DSP Students: Put in
You will write your answers on the exam sheet itself.

your requests TODAY!

12/5/17 Matni, CS16, Fal7 2

Final Exam Preparation

* Your TA office hours
* Your prof’s office hours
e Exam prep questions (emailed them via Piazza)

 Exam review session with TAs next Thursday eve
— Thursday 12/7 at 5 PM- Phelps 3526

12/5/17 Matni, CS16, Fal7

Lecture Outline

e Recursion (Ch. 14)
e Sorting algorithms

12/5/17 Matni, CS16, Fal7

Recursive Functions for Tasks

* Recursive: (adj.) Repeating unto itself
* A recursive function contains a call to itself

 When breaking a task into subtasks, it may be
that the subtask is a smaller example of the same task

* For example: Searching an array
— Could be divided into searching the 1%, then 2" halves of array
— Searching each half is a smaller version of searching the whole array

12/5/17 Matni, CS16, Fal7

Example: The Factorial Function

Recall: =l Dl e SR

You could code this out as either (the following is pseudocode):
* Afor-loop:
(for k=1; k < x; k++) { factorial *= k; }

* Or arecursion/repetition:
factorial(x) = x * factorial(x-1)
X * (x-1) * factorial (x-2)

SRE e
until you get to factorial(1)

12/5/17 Matni, CS16, Fal7

Example: Recursive Formulas

* Recall from Math, that you can create a recursive formula from a
sequence

Example:
* Consider the arithmetic sequence:

5, 10, 15, 20, 25, 30, ...

* Iflcalla, =5, then | can write the formula as:
a,=a ;+5

12/5/17 Matni, CS16, Fal7

Starting Point (aka Base Case)

e |f we start with n =1... (an arbitrary value
(Y) an = an-1+ 5

e ...then we could devise an algorithm like this:

1. If n=1, then return 5 to a(n)

o This is called the base-case

2. Otherwise, return a(n-1) +5
o Thisis the recursion (i.e. function calling itself)

e Example:n=3
— According to [2]: a(n) =a(3)=a(2)+5=(a(1) +5) +5
— According to [1]: Since a(1) =5, thena(3)=(5+5)+5=15

12/5/17 Matni, CS16, Fal7 8

Case Study: Vertical Numbers

g write vertical(3):
* Problem Definition:

3
Write a recursive function that takes an write_vertical(12):
integer number and prints it out ;
one digit at a time vertically : write_vertical(123):
1
2
void write_vertical(int n); 3

//Precondition: n >= 0

//Postcondition: n is written to the screen vertically
// with each digit on a separate line

12/5/17 Matni, CS16, Fal7

Case Study: Vertical Numbers

Analysis:
e Take a number, like 543.

 How do | separate the digits from each other?
— So that | can print out 5, then 4, then 3?

 Hint: Note that 543 =500 + 40 + 3

12/5/17 Matni, CS16, Fal7

10

Case Study: Vertical Numbers

Algorithm design

* Simplest case:
If nis 1 digit long, just write the number

* More typical case:
1) Output all but the last digit vertically (recursion!)
2) Write the last digit (base case!)
— Step 1 is a smaller version of the original task - The recursive case
— Step 2 is the simplest case - The base case

12/5/17 Matni, CS16, Fal7

11

Case Study: Vertical Numbers

The write_vertical algorithm (in pseudocode):

void write_vertical(int n) :
{ i
if (n < 10) cout << n << endl;
// n < 10 means n is only one digit .

else // n is two or more digits long <---—-——-—-—"""

i

write_vertical(n with the last digit removed);
cout << the last digit of n << endl;

}

12/5/17 Matni, CS16, Fal7

12

Case Study: Vertical Numbers

* Note that: n / 10 (integer division)
returns n with just the least-significant digit removed

— So, for example,85/10=8 or 124/10=12

* Whereas: n % 10 returns the least-significant digit of n
— In this example, 124 % 10 =4

* How might we combine these in the function?

12/5/17 Matni, CS16, Fal7 13

Case Study: Vertical Numbers

The write_vertical function in C++

void write_vertical(int n)

{

if (n < 10) cout << n << endl;
// n < 10 means n is only one digit

else // n is two or more digits long

{
write_vertical(n / 10);
cout << (n % 10) << endl;
} See Display 14.1 in textbook

}

12/5/17 Matni, CS16, Fal7 14

A Closer Look at Recursion

* The function write_vertical uses recursion
— It simply calls itself with a different argument

* |f you want to track a recursive call (i.e. to debug it):

1. Temporarily stop the execution at the recursive call
2. Show or save the result of the call before proceeding
3. Evaluate the recursive call

4. Resume the stopped execution

12/5/17 Matni, CS16, Fal7

15

How Recursion Ends

e Recursive functions have to stop eventually

* One of the recursive calls must not depend on
another recursive call

e Usually, that’s the |ast recursive call
— What ends recursion is the base case
— Also called stopping case

12/5/17 Matni, CS16, Fal7

16

“Infinite” Recursion

* A function that never reaches a base case, in theory, will
run forever

* |n practice, the computer will often run out of resources
(i.e. memory usually) and the program will terminate
abnormally

e So... design your recursive functions carefully!

12/5/17 Matni, CS16, Fal7 17

Example: Infinite Recursion

* What if we wrote the function write_vertical, without the base case
void write_vertical(int n)

i

write vertical (n / 10);
cout << n % 10 << endl;

¥

* Will eventually call write_vertical(0),
which will call write_vertical(0),
which will call write_vertical(0),
which will call write_vertical(0), ...etc...

12/5/17 Matni, CS16, Fal7

18

Stacks for Recursion

 Computers use a memory structure called a stack to keep track of recursion

e Stack: a computer memory structure analogous to a stack of paper

— To place information on the stack, write it on a piece of paper and place it on top
of the stack

— To insert more information on the stack, use a clean sheet of paper, write the
information, and place it on the top of the stack

— To retrieve information, only the top sheet of paper can be read, and then
thrown away when it is no longer needed

12/5/17 Matni, CS16, Fal7 19

LIFO

* This scheme of handling sequential data in a stack is called:

Last In-First Out (LIFO)
* When we put data in a LIFO, we call it a push
* When we pull data out of a LIFO, we call it a pop

push
e The other common scheme in

CS data organization is
FIFO (First In-First Out)

12/5/17 Matni, CS16, Fal7

STA
pop

FEW -

I
3

S—

[.LIFO (Last In First Out)

HEENE =,

20

Stacks & Making the Recursive Call

When execution of a function definition reaches a recursive call...
1. Execution is halted (paused)
2. Then, datais saved in a new place in the stack
* It's part of computer memory, but think of it as a “clean sheet of paper”
3. The “sheet of paper” is placed on top of the stack
4. Then a new sheet is used for the recursive call

a) A new function definition is written, and arguments are plugged into parameters
b) Execution of the recursive call begins

5. And it goes on...

12/5/17 Matni, CS16, Fal7 21

Stacks & Ending Recursive Calls

When a recursive function call is able to complete its computation with no
recursive calls...

1. The computer retrieves the top “sheet of paper” from the stack
* Resumes computation based on the information on the sheet

When that computation ends, that sheet of paper is “discarded”

The next sheet of paper on the stack is retrieved so that processing can
resume

4. The process continues until no sheets remain in the stack

12/5/17 Matni, CS16, Fal7 22

Activation Frames

* |nstead of “paper”, think “memory”...

* Portions of computer memory are used for the stack
— The contents of these portions of memory is called an activation frame

* Because each recursive call causes an activation frame to be placed on the
stack

— Infinite recursions can force the stack to grow beyond its limits

12/5/17 Matni, CS16, Fal7

23

Stack Overflow \\\

oy

* |Infinite recursions can force the stack
to grow beyond its limits

» The result of this erroneous operation is called a stack overflow
— This causes abnormal termination of the program

12/5/17 Matni, CS16, Fal7 Image from stackoverflow.com 24

Recursion versus lteration

Algorithmic Truism:

* Any task that can be accomplished using recursion can also be done without
recursion (usually using loops)

* A non-recursive version of a repeating function is called an iterative-version

* A recursive version of a function...
— Usually runs a little slower
— BUT it uses code that is easier to write and understand

12/5/17 Matni, CS16, Fal7 25

Recursive Functions for Values

e Recursive functions don’t have to be void types like the last example
— They can also return values

* The technique to design a recursive function that returns a value is basically
the same as what we described...

12/5/17 Matni, CS16, Fal7 26

Program Example: A Powers Function

Example: Define a new power function (not the one in <cmath>)
* Letitreturn an integer, 23 ,when we call the function as: inty = power(2,3);

* Use the following definition: x,=x,; *x fe 28=22%2
— Note that this only works if n is a positive number

e Translating the right side of that equation into C++ gives: power(x, n-1) * x
— What is the base/stopping case?
— It’s when n = 0, then power() should return 1

12/5/17 Matni, CS16, Fal7 27

int power(int x, int n)

{
if (n < 9)

{

cout << “Cannot use negative powers in this function!\n”’;
exit(1);
}

if (n > 9)
return ((power(x, n - 1)*x);

else // i.e. 1f n ==
return (1);

12/5/17 Matni, CS16, Fal7

28

Tracing power(2, 3)

e power(2, 3) results in the following recursive calls:

— power(2,3) ispower(2,2)*2 literejore.
power(2,3)
— power(2,2) is power(2,1)*2 = power(2,2) x 2

(power(2,1) x 2) x 2
((power(2,0) x2) x2) x 2

— power(2,1) ispower(2,0)*2

\

— power (2,0)is 1 (stopping case) 1x2x2x2

12/5/17 Matni, CS16, Fal7 8

12/5/17

Sequence of recursive calls

1
PUSH INTO THE STACK ‘

o
—7 —
oower(2, 0y#2
((pouer@2. %2)

e e

—

i
Gower(z ' 1?}*2 \.
Sl ,/

— I

i

G&;;r{}:_ L DF2)
Ne—

(power (2, 3D

Start Here

Matni, CS16, Fal7

30

Sequence of recursive calls
1
4

I e

— .
[/”:Enwertz ﬂ) *2\

N—

7
Qwer(z 1}“*2 \

PUSH INTO THE STACK

.
{
gt

.-"" f— l_ T

< er{z zj’“**z \
%

@;;rcz‘.'“é)

Start Here

12/5/17

How the final value is computed

POP OUT OF THE STACK
{/(::F 1 } *2\\\|
NTT——
1%2 js 2 ff

e ’__‘1___ ™ %2 ™~
N— "
xﬁ__:_: - -

4%2 s 8 ’;
-

power(2, 3) is 8

Matni, CS16, Fal7 31

Thinking Recursively

 When designing a recursive function, you do not need to trace
out the entire sequence of calls

* |nstead just check the following:

— That there is no infinite recursion,
i.e. that, eventually, a stopping case is reached

— That each stopping case returns the correct value
— That the returned is the correct value

12/5/17 Matni, CS16, Fal7

32

12/5/17

Sorting

Matni, CS16, Fal7

33

Sorting a Data Structure

e Sorting a list of values is another very common task
— Create an alphabetical listing
— Create a list of values in ascending order
— Create a list of values in descending order

] _ : Some common sorting algorithms
* Many sorting algorithms exist Bucket sort

— Some are very efficient Bubble sort

Insertion sort

Selection sort
Heapsort
Mergesort

— Some are easier to understand

12/5/17 Matni, CS16, Fal7 34

12

Insertion

12

Selection

©

Bubble

©

Quick

©

Quick3

[Restart all

h—

12

e

Nearly Sorted

12

e

Few Unique

12/5/17

Matni, CS16, Fal7

35

The Selection Sort Algorithm

As used with an array

 When the sort is complete, the elements of the array are
ordered in ascending order, such that:

a[0] < a[l] <...<a[number_used - 1]

* This leads to an outline of an algorithm:

for (int index = 6; index < number _used; index++)
place the indext" smallest element in a[index]

12/5/17 Matni, CS16, Fal7 36

Sort Algorithm Development

* One array is sufficient to do our sorting (See Display 7.11 in the textbook)

e Start by searching for the smallest value in the array

* Place this value in a[0], and place the value that was in a[0] in the location
where the smallest was found

— i.e. swap them

* Then, starting at a[1], find the smallest remaining value swap it with the
value currently in a[1]

* Then, starting at a[2], continue the process until the array is sorted

12/5/17 Matni, CS16, Fal7 37

12/5/17

Selection Sort

al0] a[1] a[2] al[3] al[4] a[5] al[6] a[7] a[8] a[9]

8

6

10

2

16

4

18

14

12

20

38

12/5/17

Selection Sort

al0] a[1] a[2] al[3] al[4] a[5] al[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 14 12 20

y \

8 6 10 2 16 4 18 14 12 20

N .4

2 6 10 8 16 4 18 14 12 20
/ \

2 6 10 8 16 4 18 14 12 20
N -

2 4 10 8 16 6 18 14 12 20

39

12/5/17

void fill array(a[], N, number _used);
void sort_array(a[], number _used);
void print_array(const a[], number _used);

void swap_values(int& v1, int& v2);
void index_of_smallest

(const a[], start_index, number_used);

int main()

{

int sample arr[10], number_used;
fill_array(sample_array, 10, number_used);
sort_array(sample array, number used);

print_array(sample_array, number_used);

return 0;

40

void sort_array(a[], number_used)

{
int index_of next smallest;
for (int i = ©; i < number _used - 1; i++)
{
index_of _next smallest = index_of_smallest(a, i, number _used);
swap_values(a[i], a[index_of next smallest]);
}
}
void swap_values(int& v1, int& v2)
{
int temp = vi1;
vl = v2;
v2 = temp;

}

12/5/17 Matni, CS16, Fal7

41

int index_of_smallest(const int a [], int start index, int number used)
{

int min = a[start index], index_of min = start index;

for (int i = start index + 1; index < number used; index++)
if (a[i] < min)
{
min = a[i];
index_of min = 1i;

}

return index_of _min;

12/5/17 Matni, CS16, Fal7

DISPLAY 7.12 Sorting an Array (part 1 of 2)

DISPLAY 7.12 Sorting an Array (part 2 of 2)

//Tests the procedure sort.
#include <iostreom>

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.

//a[8] through a[number_used — 1] have been filled with
//nonnegative integers read from the keyboard.

void sort(int a[], int number_used);

//Precondition: number_used <= declared size of the array a.

//The array elements a[@] through a[number_used — 1] have values
//Postcondition: The values of a[8]) through a[number_used — 1] have
//been rearranged so that a[@] <= a[1] <= ... <= a[number_used — 1].

void swop_volues(int& vl, int& v2);
//Interchanges the values of vl and v2.

int index_of_smallest(const int a[), int start_index, int number_used);
//Precondition: @ <= start_index < number_used. Referenced array elements have
//values.

//Returns the index i such that a[i] is the smallest of the values
/la[start_index], a[start_index + 1], ..., a[number_used — 1].

int main()
{
using namespace std;
cout << "This program sorts numbers from lowest to highest.\n";

int sample_array[10], number_used;

fill_array(sample_array, 10, number_used);
sort(sample_array, number_used);

cout << "In sorted order the numbers are:\n";

for (int index = ©; index < number_used; index++)
cout << somple_array[index] << " *;

cout << endl;

return 0;

}

//Uses iostream:
void fill_array(int a[], int size, int& number_used)

void sort(int a[], int number_used)

{
int index_of_next_smallest;

<The rest of the definition of fi11_array is given in Display 7.9.>

@
(continued)

38
39
40

for (int index = ©; index < number_used - 1; index++)
{//Place the correct value in a[index]:
index_of_next_smallest =
index_of_smallest(o, index, number_used);
swop_values(a[index]), a[index_of_next_smallest));
//a[8] <= a[1] <=...<= a[index] are the smallest of the original array
//elements. The rest of the elements are in the remaining positions.
}
}
void swop_values(int& v1, int& v2)
{
int temp;
temp « vl;
vl = v2;
v2 = temp;
}
int index_of_smallest(const int a[], int start_index, int number_used)
{

int min = a[stort_index],
index_of _min = start_index;
for (int index = start_index + 1; index < number_used; index++)
if (a[index]) < min)
{
min = a[index];
index_of_min = index;
//min is the smallest of afstart_index] through a[index]
}

return index_of _min;

Sample Dialogue

This program sorts nusbers from lowest to highest.
Enter up to 10 nonnegative whole numbers.

Mark the end of the list with o negative number.
80 30 50 70 60 90 20 30 40 -1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90

YOUR TO-DOs

Jd HW 9 due Thu. 12/7
d Lab 9 due Wed. 12/6

[Visit Prof’s and TAs‘ office hours if you need help!

(] STUDY FOR YOUR FINAL EXAM!!!

12/5/17 Matni, CS16, Fal7

44

12/5/17

</LECTURE>

Matni, CS16, Fal7

45

