
Linked Lists

CS 16: Solving Problems with Computers I
Lecture #16

Ziad Matni
Dept. of Computer Science, UCSB

• Material: Everything we’ve done
– Homework, Labs, Lectures, Textbook

• Tuesday, 12/12 in this classroom
• Starts at 4:00pm **SHARP** (come early)
• Ends at 7:00pm **SHARP**
• BRING YOUR STUDENT IDs WITH YOU!!!
• Closed book: no calculators, no phones, no computers
• Only 1 sheet (double-sided ok) of written notes

– Must be no bigger than 8.5” x 11”
– You have to turn it in with the exam

• You will write your answers on the exam sheet itself.

12/4/2017 Matni, CS16, Fa17 2

DSP Students: Put in
your requests TODAY!

Final Exam Preparation

• Your TA office hours
• Your prof’s office hours
• Exam prep questions (will post them on Piazza by the weekend)
• Exam review session with TAs next Thursday eve

– Details to-be-announced later

12/4/2017 Matni, CS16, Fa17 3

Lecture Outline

• Linked Lists (Ch. 13.1)
– We will cover everything in this section thru page XXX

• We are not covering Ch. 13.2 section!

12/4/2017 Matni, CS16, Fa17 4

Pointers and Linked Lists

• Definition of Linked Lists:
Linear collection of data elements, called nodes, each pointing
to the next node by means of a pointer

• List elements can easily be inserted or removed without
reorganization of the entire structure (unlike arrays)

• Data items in a linked list do not have to be stored in one large
memory block (again, unlike arrays)

12/4/2017 Matni, CS16, Fa17 5

Linked Lists

• You can build a list of “nodes” which are made up of variables
and pointers to create a chain.

• Adding and deleting nodes in the link can be done by “re-
routing” pointer links.

12/4/2017 Matni, CS16, Fa17 6

Nodes

• The boxes in the previous drawing represent the nodes of a
linked list
– Nodes contain the data item(s) and a pointer that can point to

another node of the same type
– The pointers point to an entire node, not an individual item that

might be in the node

• The arrows in the drawing represent pointers

12/4/2017 Matni, CS16, Fa17 7

Nodes and Pointers – An Illustrated Example
(shown as Display 13.1 in the textbook)

12/4/2017 8

Implementing Nodes

• Nodes are implemented in C++ as structs or classes
• Example: A structure to store two data items and a pointer

to another node of the same type, along with a type
definition might be:

struct ListNode
{

string item;
int count;
ListNode *link;

};

typedef ListNode* ListNodePtr;

12/4/2017 Matni, CS16, Fa17 9

This circular definition
is allowed in C++

The head of a List

• The box labeled head, in Display 13.1,
is not a node, but simply a pointer variable that
points to a node

• Pointer variable head is declared as:

ListNodePtr head;

12/4/2017 Matni, CS16, Fa17 10

struct ListNode
{

string item;
int count;
ListNode *link;

};
typedef ListNode* ListNodePtr;
ListNodePtr head;

Accessing Items in a Node

• Looking at this example: one way to change the
number in the first node from 10 to 12:

(*head).count = 12;

• head is a pointer variable to a node,
so *head is the node that head points to

• The parentheses are necessary because the dot
operator (.) has higher precedence than the
dereference operator (*)

12/4/2017 Matni, CS16, Fa17 11

struct ListNode
{

string item;
int count;
ListNode *link;

};
typedef ListNode* ListNodePtr;
ListNodePtr head;

item
count
*link

The Arrow Operator

• The arrow operator -> combines the actions of
the dereferencing operator * and the dot . operator

• Specifies a member of a struct or object pointed to by a
pointer:

(*head).count = 12;
can be written as

head->count = 12;

• The arrow operator is more commonly used
than the (*head).varName approach

12/4/2017 Matni, CS16, Fa17 12

struct ListNode
{

string item;
int count;
ListNode *link;

};
typedef ListNode* ListNodePtr;
ListNodePtr head;

item
count
*link

NULL

• The pre-defined constant NULL is used as an end marker for a
linked list
– A program can step through a list of nodes by following the pointers, but

when it finds a node containing NULL, it knows it has come to the end of
the list

• The value of a pointer that has nothing to point to is NULL
– The value of NULL is 0

12/4/2017 Matni, CS16, Fa17 13

NULL

• A definition of NULL is found in several libraries,
including <iostream> and <cstddef>

• Any pointer can be assigned the value NULL:

double* there = NULL; // a pointer pointing to nothing
// C++ as Zen Buddhism?!

12/4/2017 Matni, CS16, Fa17 14

Accessing Node Data

12/4/2017 15

head->count = 12;
head->item = “bagels”;

cout << head->count;
//prints 12

cout << head->link->count;
//prints 3

cout << head->link->link->item
//prints “tea”

Linked Lists in a Nutshell

• The diagram in Display 13.2 depicts a linked list

• A linked list is a list of nodes in which each node has a member
variable that is a pointer that points to the next node in the list
– The first node is called the head
– The pointer variable head, points to the first node

• The pointer named head is not the head of the list…it points to the head of the list

– The last node contains a pointer set to NULL

12/4/2017 Matni, CS16, Fa17 16

nullptr
• The fact that the constant NULL is actually the number 0 leads to an ambiguity

problem.

Consider the overloaded function below:
void func(int *p);
void func(int i);

Which function will be invoked if we call func(NULL)?

• To avoid this, C++11 has a new constant, nullptr.
It is not the integer zero, but a literal constant used to represent a null pointer.

• Use NULL in your work for now, but understand the concept of nullptr also…

12/4/2017 Matni, CS16, Fa17 17

Building a Linked Liststruct Node
{

int data;
Node *link;

};

typedef Node* NodePtr;
NodePtr head;

head = new Node;

head->data = 3;
head->link = NULL;
12/4/2017 Matni, CS16, Fa17 18

head

3

NULL

Function head_insert

• Let’s create a function that inserts nodes at the head of a list.

void head_insert(NodePtr& head, int the_number);
– The first parameter is a NodePtr parameter that points to the first node in the linked list
– The second parameter is the number to store in the list

• head_insert will create a new node with the_number
– First, we will copy the_number into a new node
– Then, this new node will be inserted in the list as the new head node

12/4/2017 Matni, CS16, Fa17 19

Pseudocode for head_insert

1. Create a new dynamic variable pointed to by temp_ptr

2. Place the data (the_number) in the new node called *temp_ptr

3. Make temp_ptr's link variable point to the head node

4. Make the head pointer point to temp_ptr

12/4/2017 Matni, CS16, Fa17 20

Pseudocode for
head_insert

12/4/2017 Matni, CS16, Fa17 21

1. Create a new dynamic variable
pointed to by temp_ptr

2. Place the data (the_number) in the
new node called *temp_ptr

3. Make temp_ptr's link variable point
to the head node

4. Make the head pointer point to
temp_ptr

Pseudocode for
head_insert

12/4/2017 Matni, CS16, Fa17 22

1. Create a new dynamic variable
pointed to by temp_ptr

2. Place the data (the_number) in the
new node called *temp_ptr

3. Make temp_ptr's link variable point
to the head node

4. Make the head pointer point to
temp_ptr

12/4/2017 Matni, CS16, Fa17 23

#include <iostream>
using namespace std;

struct Node
{

int data;
Node *link;

};

Typedef Node* NodePtr;
void head_insert(NodePtr& head, int the_number);

int main()
{

NodePtr head;
head = new Node;

head->data = 3;
head->link = nullptr;

head_insert(head, 5);

return 0; }

void head_insert(NodePtr& head, int the_number)
{

NodePtr temp_ptr;
temp_ptr = new Node;

temp_ptr->data = the_number;

temp_ptr->link = head;
head = temp_ptr;

}

Translating head_insert
to C++

Memory Leaks

• Nodes that are lost by assigning their pointers a new address
are not accessible any longer

• The program has no way to refer to the nodes and cannot
delete them to return their memory to the heap (freestore)

• Programs that lose nodes have a memory leak
– Significant memory leaks can cause system crashes

12/4/2017 Matni, CS16, Fa17 24

Searching a Linked List

• To design a function that will locate a particular
node in a linked list:
– We want the function to return a pointer to the node so we can use

the data if we find it, else it should return NULL (nullptr)
– The linked list is one argument to the function
– The data we wish to find is the other argument
– This declaration should work:

NodePtr search(NodePtr head, int target);

12/4/2017 Matni, CS16, Fa17 25

Function search (refined)

• We will use a local pointer variable, named here, to move
through the list checking for the target
– The only way to move around a linked list is to follow pointers

• We will start with here pointing to the first node and move
the pointer from node to node following the pointer out of
each node

12/4/2017 Matni, CS16, Fa17 26

Pseudocode for search

• Make pointer variable here point to the head node
• While ((here does not point to a node containing target)

AND (here does not point to the last node))
{

make here point to the next node
}

• If (here points to a node containing the target)
return here;

else
return NULL;

12/4/2017 Matni, CS16, Fa17 27

Moving Through the List
• The pseudocode for search requires that pointer here

step through the list

• How does here follow the pointers from node to node?
– When here points to a node, here->link is the address of the next node

• To make here point to the next node, make the assignment:

here = here->link;

12/4/2017 Matni, CS16, Fa17 28

struct Node
{

int data;
Node *link;

};

12/4/2017 Matni, CS16, Fa17 29

12/4/2017 Matni, CS16, Fa17 30

12/4/2017 Matni, CS16, Fa17 31

#include <iostream>
using namespace std;

struct Node
{

int data;
Node *link;

};

Typedef Node* NodePtr;
NodePtr search(NodePtr head, int target);

int main()
{

…
…
someptr = search(head, 6);
…
return 0; }

NodePtr search(NodePtr head, int target)
{

NodePtr here = head;

if (here == NULL)
return NULL;

else
{

//go thru the linked list and look for target
while ((here->data != target) &&

(here->link != NULL))
here = here->link;

//the while loop stopped b/c it either
// found target or it found nothing

if (here->data == target)
return here;

else
return NULL;

}
}

Translating search to C++

Writing Code That Goes Thru a LL

12/4/2017 Matni, CS16, Fa17 32

//let’s say you have a LL already defined…

Node *temp = new Node;

temp = head;

while(temp != NULL)

{

cout << temp->data << endl;

temp = temp->next;

}

Other Functions We Might Create for LLs…

• Insert node at the head
• Print out all the values in the LL
• Search the LL for a target

• Insert node at the end of LL
• Insert node anywhere in the LL
• Delete a node according to some target value criteria
• Sort an LL according to some target value criteria
etc…

12/4/2017 Matni, CS16, Fa17 33

YOUR TO-DOs

 HW 9 due Thu. 12/7
 Lab 9 due Wed. 12/6 by noon

 Read Ch. 14 on Recursion for Tuesday

 Visit Prof’s and TAs‘ office hours if you need help!
 Smile! And make people wonder why the heck you’re smiling

12/4/2017 Matni, CS16, Fa17 34

12/4/2017 Matni, CS16, Fa17 35

	Linked Lists
	FINAL EXAM IS COMING!			Dec 12th!
	Final Exam Preparation
	Lecture Outline
	Pointers and Linked Lists
	Linked Lists
	Nodes
	Nodes and Pointers – An Illustrated Example�(shown as Display 13.1 in the textbook)
	Implementing Nodes
	The head of a List
	Accessing Items in a Node
	The Arrow Operator
	NULL
	NULL
	Accessing Node Data
	Linked Lists in a Nutshell
	nullptr
	Building a Linked List
	Function head_insert
	Pseudocode for head_insert
	Pseudocode for head_insert
	Pseudocode for head_insert
	Translating head_insert �to C++
	Memory Leaks
	Searching a Linked List
	Function search (refined)
	Pseudocode for search
	Moving Through the List
	Slide Number 29
	Slide Number 30
	Translating search to C++
	Writing Code That Goes Thru a LL
	Other Functions We Might Create for LLs…
	YOUR TO-DOs
	Slide Number 35

