Linked Lists

CS 16: Solving Problems with Computers |
Lecture #16

Ziad Matni
Dept. of Computer Science, UCSB

FINAL EXAM IS COMING! DeC 12th!

* Material: Everything we’ve done
— Homework, Labs, Lectures, Textbook

* Tuesday, 12/12 in this classroom
e Starts at 4:00pm **SHARP** (come early)
e Ends at 7:00pm **SHARP**

e BRING YOUR STUDENT IDs WITH YOU!!!
e Closed book: no calculators, no phones, no computers
e Only 1 sheet (double-sided ok) of written notes

— Must be no bigger than 8.5” x 11”

— You have to turn it in with the exam DSP Students: Put in
You will write your answers on the exam sheet itself.

your requests TODAY!

12/4/2017 Matni, CS16, Fal7 2

Final Exam Preparation

* Your TA office hours
* Your prof’s office hours
e Exam prep questions (will post them on Piazza by the weekend)

 Exam review session with TAs next Thursday eve
— Details to-be-announced later

12/4/2017 Matni, CS16, Fal7 3

Lecture Outline

e Linked Lists (Ch. 13.1)
— We will cover everything in this section thru page XXX

e We are not covering Ch. 13.2 section!

12/4/2017 Matni, CS16, Fal7

Pointers and Linked Lists

e Definition of Linked Lists:
Linear collection of data elements, called nodes, each pointing
to the next node by means of a pointer

e List elements can easily be inserted or removed without
reorganization of the entire structure (unlike arrays)

e Dataitems in a linked list do not have to be stored in one large
memory block (again, unlike arrays)

12/4/2017 Matni, CS16, Fal7 5

Linked Lists

* You can build a list of “nodes” which are made up of variables
and pointers to create a chain.

e Adding and deleting nodes in the link can be done by “re-
routing” pointer links.

—»12| &+»99| &+ 37| 1)
newNode newNode
37 ?7 \ node node.next node.next.next
12| &—>99| &> >»12 99| &> v
node node.next node node.next 12 ‘J B:n‘ E_
node ode. node.next.next

12/4/2017 Matni, CS16, Fal7

Nodes ——>12|e{»99 e >(37/el>

node node.next node.next.next

e The boxes in the previous drawing represent the nodes of a
linked list

— Nodes contain the data item(s) and a pointer that can point to
another node of the same type

— The pointers point to an entire node, not an individual item that
might be in the node

e The arrows in the drawing represent pointers

12/4/2017 Matni, CS16, Fal7 7

Nodes and Pointers — An lllustrated Example
(shown as Display 13.1 in the textbook)

Nodes and Pointers
head

| —

llteall
2

end marker

12/4/2017

Implementing Nodes -

 Nodes are implemented in C++ as structs or classes

e Example: A structure to store two data items and a pointer
to another node of the same type, along with a type

definition might be:

struct ListNode

{
string item;
int count;
ListNode *1ink;
¥

P

Nodes and Pointers
head [

end marker

This circular definition

«

is allowed in C++

typedef ListNode* ListNodePtr;

12/4/2017

Matni, CS16, Fal7

Nodes and Pointers
head

The head of a List - L
 The box labeled head, in Display 13.1, an
is not a node, but simply a pointer variable that

points to a node | l

"tea"
2

end marker

e Pointer variable head is declared as: struct ListNode
{
string item;
ListNodePtr head; int count;
ListNode *1link;
}s

typedef ListNode* ListNodePtr;
ListNodePtr head;

12/4/2017 Matni, CS16, Fal7 10

Nodes and Pointers
head

Accessing Itemsina Node (— %"

Lami

rljamll

e Looking at this example: one way to change the
number in the first node from 10 to 12:

(*head) .count = 12; |

"tea"

 head is a pointer variable to a node, 2
. . end marker
so *head is the node that head points to ‘

struct ListNode

{
* The parentheses are necessary because the dot string item;
operator (.) has higher precedence than the it count;
- ListNode *1ink;
dereference operator (*) };

typedef ListNode* ListNodePtr;
ListNodePtr head;

12/4/2017 Matni, CS16, Fal7 11

Nodes and Pointers
head

The Arrow Operator -

e The arrow operator -> combines the actions of

the dereferencing operator * and the dot . operator

e Specifies a member of a struct or object pointed to by a

p0|nter: end marker

(*head).count = 12; ?truct ListNode

can be written as string item;

) int count;
head->count = 12: ListNode >T‘Iink;

e The arrow operator is more commonly used }; . .
typedef ListNode* ListNodePtr;
than the (*head).varName approach ListNodePtr head;

12/4/2017 Matni, CS16, Fal7 12

NULL

 The pre-defined constant NULL is used as an end marker for a
linked list

— A program can step through a list of nodes by following the pointers, but
when it finds a node containing NULL, it knows it has come to the end of
the list

 The value of a pointer that has nothing to point to is NULL
— The value of NULL is O

12/4/2017 Matni, CS16, Fal7 13

NULL

e A definition of NULL is found in several libraries,
including <iostream> and <cstddef>

e Any pointer can be assigned the value NULL:

double* there = NULL; // a pointer pointing to nothing
// C++ as Zen Buddhism?!

12/4/2017 Matni, CS16, Fal7

14

Accessing Node Data

Before head->count = 12; After
head B head->item = “bagels”; head | “bagels"
I — 10 12
| cout << head->count; |
‘ //prints 12 ¢
'jT" cout << head->link->count; j?
| //prints 3 |
¢ cout << head->link->1link->item ¢
t? //prints “tea” t?
NULL NULL

12/4/2017

Linked Lists in a Nutshell

e The diagram in Display 13.2 depicts a linked list

e Alinked list is a list of nodes in which each node has a member
variable that is a pointer that points to the next node in the list
— The first node is called the head

— The pointer variable head, points to the first node
* The pointer named head is not the head of the list...it points to the head of the list

— The last node contains a pointer set to NULL

12/4/2017 Matni, CS16, Fal7 16

nullptr

e The fact that the constant NULL is actually the number O leads to an ambiguity
problem.

Consider the overloaded function below:

void func(int *p);
void func(int i);

Which function will be invoked if we call func (NULL)?

e To avoid this, C++11 has a new constant, nul Iptr.
It is not the integer zero, but a literal constant used to represent a null pointer.

e Use NULL in your work for now, but understand the concept of nullptr also...

12/4/2017 Matni, CS16, Fal7 17

struct Node

{

int data;
Node *1ink;

}s

typedef Node* NodePtr;
NodePtr head;

head = new Node;

head->data 3;
head->1ink = NULL;

12/4/2017

Building a Linked List

Matni, CS16, Fal7

head

l

3

NULL

18

Function head_insert

e Let’s create a function that inserts nodes at the head of a list.

void head insert(NodePtr& head, int the_ number);
— The first parameter is a NodePtr parameter that points to the first node in the linked list
— The second parameter is the number to store in the list

* head_insert will create a new node with the_number

— First, we will copy the_number into a new node
— Then, this new node will be inserted in the list as the new head node

12/4/2017 Matni, CS16, Fal7 19

Pseudocode for head_insert

1. Create a new dynamic variable pointed to by temp_ptr
2. Place the data (the_number) in the new node called *temp_ptr
3. Make temp_ptr's link variable point to the head node

4. Make the head pointer point to temp_ptr

12/4/2017 Matni, CS16, Fal7

20

Adding a Node to a Linked List

Pseudocode for L et up e e
head_insert ey =]
1. Create a new dynamic variable head 0
| —

pointed to by temp_ptr S

Y
2. Place the data (the_number) in the 3

NULL

new node called *temp_ptr

3. Make temp_ptr's link variable point
to the head node

4. Make the head pointer point to
temp_ptr

12/4/2017 Matni, CS16,

Adding a Node to a Linked List

PseUdOCOde for 1. Set up new node 2. temp_ptr->Tlink = head;

° temp_ptr 1 temp_ptr 1

head_insert — | R
1. Create a new dynamic variable nead . nead .
pointed to by temp_ptr S
Y |

2. Place the data (the_number) in the 3 3

NULL NULL

new node called *temp_ptr

3. head = temp_ptr; 4. After function call
3. Make temp_ptr's link variable point
temp_ptr
12 12
to the head node [
4. Make the head pointer point to g enoed Y bl i
15 15
H - — —
temp_ptr |
Y i
3 3
12/4/2017 Matni, CS16, f] NULL—] NULL—

#include <iostream>
using namespace std;

struct Node

{

int data;
Node *1link;

}s

Typedef Node* NodePtr;
void head_insert(NodePtr& head,

int main()

{
NodePtr head;

head = new Node;
head->data = 3;
head->1ink = nullptr;

head_insert(head, 5);

return 0; }

Translating head_insert
to C++

int the_number);

void head_insert(NodePtr& head, int the_number)
{

NodePtr temp_ptr;

temp_ptr = new Node;

temp_ptr->data = the_number;

temp_ptr->link = head;

head = temp_ptr;
}

Memory Leaks

 Nodes that are lost by assigning their pointers a new address
are not accessible any longer

e The program has no way to refer to the nodes and cannot
delete them to return their memory to the heap (freestore)

e Programs that lose nodes have a memory leak

— Significant memory leaks can cause system crashes

12/4/2017 Matni, CS16, Fal7

24

Searching a Linked List

e To design a function that will locate a particular
node in a linked list:

— We want the function to return a pointer to the node so we can use
the data if we find it, else it should return NULL (nullptr)

— The linked list is one argument to the function
— The data we wish to find is the other argument
— This declaration should work:

NodePtr search(NodePtr head, int target);

12/4/2017 Matni, CS16, Fal7 25

Function search (refined)

 We will use a local pointer variable, named here, to move
through the list checking for the target

— The only way to move around a linked list is to follow pointers

 We will start with here pointing to the first node and move
the pointer from node to node following the pointer out of
each node

12/4/2017 Matni, CS16, Fal7 26

Pseudocode for search

 Make pointer variable here point to the head node

e While ((here does not point to a node containing target)
AND (here does not point to the last node))
{

make here point to the next node
}

e |f (here points to a node containing the target)
return here;
else
return NULL;

12/4/2017 Matni, CS16, Fal7

27

struct Node

Moving Through the List U int data;

Node *1link;
}s :
e The pseudocode for search requires that pointer here

step through the list

e How does here follow the pointers from node to node?
— When here points to a node, here->1ink is the address of the next node

 To make here point to the next node, make the assignment:

here = here->link;

12/4/2017 Matni, CS16, Fal7 28

Searching a Linked List

1.
head

[—F——
\

here !

i
Y

6

Y

3
NULL

12/4/2017

target is 6

Matni, CS16, Fal7

29

Searching a Linked List

head

L — ;

Y

here

1

NULL

12/4/2017

target is 6

head

2 Not here

A

L
here

head

|

here

y

|

NULL

Y

NULL

ere

head

here

Y

g fFou

nd

Y

NULL

Matni, CS16, Fal7

30

#include <iostream>
using namespace std;

Tra

struct Node

{

int data;
Node *1link;

}s

Typedef Node* NodePtr;
NodePtr search(NodePtr head, int target);

int main()

{

someptr search(head, 6);

return 0; }

nslating search to C++

NodePtr search(NodePtr head, int target)

{
- NodePtr here

head;

if (here NULL)
return NULL;

else

{

//go thru the Linked List and lLook for target
while ((here->data != target) &&
(here->1ink != NULL))

here->1ink;

here

//the while Loop stopped b/c it either
// found target or it found nothing
if (here->data == target)

return here;

12/4/2017 Matni, CS16, Fal7 31

else
return NULL;

12/4/2017

Writing Code That Goes Thru a LL

//let’s say you have a LL already defined..
Node *temp = new Node;
temp = head;
while(temp != NULL)
{
cout << temp->data << endl;

temp = temp->next;

Matni, CS16, Fal7

32

Other Functions We Might Create for LLs...

* |nsert node at the head
e Print out all the values in the LL
e Search the LL for a target

* Insert node at the end of LL

e |nsert node anywhere in the LL

e Delete a node according to some target value criteria
e Sort an LL according to some target value criteria
etc...

12/4/2017 Matni, CS16, Fal7 33

YOUR TO-DOs

J HW 9 due Thu. 12/7
d Lab 9 due Wed. 12/6 by noon

(d Read Ch. 14 on Recursion for Tuesday

[Visit Prof’s and TAs’ office hours if you need help!

D S mi Ie I And make people wonder why the heck you’re smiling

12/4/2017 Matni, CS16, Fal7

34

12/4/2017

</LECTURE>

Matni, CS16, Fal7

35

	Linked Lists
	FINAL EXAM IS COMING!			Dec 12th!
	Final Exam Preparation
	Lecture Outline
	Pointers and Linked Lists
	Linked Lists
	Nodes
	Nodes and Pointers – An Illustrated Example�(shown as Display 13.1 in the textbook)
	Implementing Nodes
	The head of a List
	Accessing Items in a Node
	The Arrow Operator
	NULL
	NULL
	Accessing Node Data
	Linked Lists in a Nutshell
	nullptr
	Building a Linked List
	Function head_insert
	Pseudocode for head_insert
	Pseudocode for head_insert
	Pseudocode for head_insert
	Translating head_insert �to C++
	Memory Leaks
	Searching a Linked List
	Function search (refined)
	Pseudocode for search
	Moving Through the List
	Slide Number 29
	Slide Number 30
	Translating search to C++
	Writing Code That Goes Thru a LL
	Other Functions We Might Create for LLs…
	YOUR TO-DOs
	Slide Number 35

