Structures and Classes

CS 16: Solving Problems with Computers |
Lecture #15

Ziad Matni
Dept. of Computer Science, UCSB

WHAT THE NEXT 3 WEEKS LOOK LIKE

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
20-Nov 21-Nov 22-Nov 23-Nov 24-Nov
Lab 8 issued Lecture: Dynamic Arrays, Makefiles
27-Nov 28-Nov 29-Nov 30-Nov 1-Dec
Lab 9 issued Lecture: Structures and Classes |Lab8 due Lecture: Linked Lists
Hw 8 due
Hw 9 issued
4-Dec 5-Dec 6-Dec 1-Dec 8-Dec
Lab attendance is optional (Lecture: Recursion, Search/Sort |Lab 9 due Lecture: Review for Final Exam
Hw 9 due
11-Dec 12-Dec 13-Dec 14-Dec 15-Dec
FINAL EXAM, 4-7PM

11/29/17

Matni, CS16, Fal7

Lecture Outline

e Structures(Ch. 10.1)

* Defining structures

e Member variables and functions
e Structures in functions

e Hierarchy in structures

* Initializing structures

e Classes(Ch. 10.2)

* Defining member functions and the :: operator
e Public vs. Private members

* Constructors

11/29/17 Matni, CS16, Fal7

What Is a Class?

* Aclass is a data type whose variables are called objects

 Some pre-defined data types you have used are: int, char, double

 Some pre-defined classes you have used are: ifstream, string, vector

* You can also define your own classes as well

11/29/17 Matni, CS16, Fal7

Class Definitions

 To define a “class”, we need to...

— Describe the kinds of values the variable can hold
* Numbers? Characters? Both? Something else?

— Describe the member functions
* What can we do with these values?

* We will start by defining structures as a first step toward
defining classes

11/29/17 Matni, CS16, Fal7

11/29

/17

STRUCTURES

Matni, CS16, Fal7

Structures

e A structure’s use can be viewed as an object

e Let’s say it does not contain any member functions (for now...)

* |t does contain multiple values of possibly different types

e We'll call these member variables

11/29/17 Matni, CS16, Fal7

Structures

 These multiple values are logically related to one another and come
together as a single item

— Examples:
A bank Certificate of Deposit (CD) which has the following values:
a balance What kind of values
an interest rate should these be?!

a term (how many months to maturity)

— A student record which has the following values:
the student’s ID number What kind of values
the student’s last name should these be?!

the student’s first name
11/29/17 the StUdent’s GPA Matni, CS16, Fal7 8

The CD Structure Example: Definition

* The Certificate of Deposit structure can be defined as

struct CDAccount

{

double balance; // a dollar amount

double interest _rate; // a percentage

int term; // a term amount in months
b Remember this semicolon!

* Keyword struct begins a structure definition
 CDAccount is the structure tag — this is the structure’s type
* Member names are identifiers declared in the braces

11/29/17 Matni, CS16, Fal7

Using the Structure

e Structure definition should be placed outside any function definition
— Including outside of main()

— This makes the structure type available to all code that follows the structure
definition

* To declare two variables of type CDAccount:
CDAccount my account, your_ account;

my account and your_account
contain distinct member variables balance, interest_rate, and term

11/29/17 Matni, CS16, Fal7 10

Specifying Member Variables

 Member variables are specific to the structure variable in which they are
declared

e Syntax to specify a member variable (note the ‘.’)
Structure Variable_Name . Member Variable Name

* Given the declaration:
CDAccount my account, your_account;

* Use the dot operator to specify a member variable, e.g.
my account.balance is a double
my account.interest rate isadouble
my account.term is an int

11/29/17 Matni, CS16, Fal7

11

//Program to demonstrate the CDAccount structure type.
#1nclude <iostream>

using namespace std;

//Structure for a bank certificate of deposit:
struct CDAccount

Note the struct definition

{ is placed before main()
double balance;

double interest rate:
int term;//months until maturity

}s

void get_data(CDAccount& the_account);
//Postcondition: the_account.balance and the_account.interest_rate
//have been given values that the user entered at the keyboard.

11/29/17 Matni, CS16, Fal7 12

int main() Note the declaration of

{ CDAccount
CDAccount account;

get_data(account);

double rate_fraction, interest;

rate_fraction = account.interest rate/100.0;

interest = account.balance*rate_fraction*(account.term/12.0);
account.balance = account.balance + interest;

Note the
calculations done

with the
structure’s

MENLERENEMENE) t setf(ios::fixed):

cout.setf(ios: :showpoint);

cout.precision(2);

cout << "When your CD matures in
<< account.term << " months,\n"
<< "it will have a balance of §"
<< account.balance << endl;

return 0;

11/29/17 }

//Uses iostream:
Note that the void get_data(CDAccount& the account)
structure is passed {
into the function as cout << "Enter account balance: $";
call-by-reference. cin >> the_account.balance;
You can also pass a cout << "Enter account interest rate: ";
structure cin >> the_account.interest_rate;
call-by-value. cout << "Enter the number of months until maturity\n"
<< "(must be 12 or fewer months): ";
cin >> the_account.term;

Sample Dialogue

Enter account balance: $100.00
Note the use of the Enter account interest rate: 10.0
structure’s member Enter the number of months until maturity
va.riables with an (must be 12 or fewer months): 6

Input stream. When your CD matures in 6 months,
it will have a balance of $105.00

11/29/17 14

Duplicate Names

 Member variable names duplicated between structure types are not a problem

struct FertilizerStock

{
double quantity;

double nitrogen_content;

}s

FertilizerStock super_grow;

struct CropYield

{
int quantity;
double size;

}s

CropYield apples;

* This is because we have to use the dot operator

* super_grow.quantity and apples.quantity are different variables stored in

different locations in computer memory

11/29/17

Matni, CS16, Fal7

15

Structures as Return Function Types

e Structures can also be the type of a value returned by a
function

Example:
CDAccount shrink wrap

(double the balance, double the rate, int the_term)
{

CDAccount temp;

temp.balance = the_balance;
temp.interest rate = the_rate;
temp.term = the _term;

return temp;

What is this function doing?

11/29/17 Matni, CS16, Fal7

16

Example: Using Function shrink_wrap

* shrink_wrap builds a complete structure value in the structure
temp, which is returned by the function

 We can use shrink_wrap to give a variable of type CDAccount
a value in this way:

CDAccount new_account;
new_account = shrink wrap(1000.00, 5.1, 11);

11/29/17 Matni, CS16, Fal7 17

Assignment and Structures

* The assignment operator (=) can also be used to give values to structure types
e Using the CDAccount structure again for example:

CDAccount my account, your_account;
my _account.balance = 1000.00;
my_account.interest rate = 5.1;

my_ account.term = 12;

your_account = my_account;

* Note: This last line assigns all member variables in your_account the
corresponding values in my_account

11/29/17 Matni, CS16, Fal7 18

Hierarchical Structures

e Structures can contain member variables that are also structures

struct Date ztr'uct PersonInfo
{ :
int month; qouble.helght;
int dav: int weight;
] Y Date birthday;
int year; };
}s5

* struct PersoniInfo contains a Date structure

11/29/17 Matni, CS16, Fal7

. struct PersonInfo
{
Using Personinfo double neights
An example on “.” operator use int weight;
Date birthday;
e Avariable of type Personinfo is declared: }s
PersonInfo personl; struct Date
{
int th;
* To display the birth year of personl, i:t ::n_
first access the birthday member of personl - yez;.

cout <« per‘sonl. bil"thday...(wait! not complete yet!) }s

e But we want the year, so we now specify the year member of the birthday
member

cout << personl.birthday.year;

11/29/17 Matni, CS16, Fal7 20

Initializing Structures

e A structure can be initialized when declared
Example:

struct Date

.
int ;
int day;
int year;
}s5

Date due date = {4, 20, 2018};
Date birthday = {12, 25, 2000};

* Can be initialized in this way — watch for the order!:

11/29/17

Matni, CS16, Fal7

11/29/17

CLASSES

Matni, CS16, Fal7

22

Main Differences: structure vs class

* (Classes in C++ evolved from the concept of structures in C
 Both classes and structures can have member variables

* Both classes and structures can have member functions,
ALTHOUGH classes are made to be easier to use with member functions

e Classes may not be used when interfacing with C,
because C does not have a concept of classes (only structures)

11/29/17 Matni, CS16, Fal7

23

Example of a Class: DayOfYear Definition

class DayOfYear

{
public:

void output();

s

Member Function Declaration

int month;
int day; \

Member Variables Declaration

public vs private settings for members
public means these members can be accessed by a program
private means they are only for use by the class itself (e.g. test code)

11/29/17 Matni, CS16, Fal7

24

Defining a Member Function

 Member functions are declared in the class declaration
 Member function definitions identify class in which the function is a member

— Note the use of the :: in the following example

 Member function definition syntax:
Returned_Type Class_Name::Function_Name(Parameter_List)

{
}

Function Body Statements

11/29/17 Matni, CS16, Fal7 25

Defining a Member Function

 Member function definition syntax:
Returned_Type Class Name::Function_Name(Parameter_ List)

{
}

Function Body Statements

EXAMPLE:
void DayOfYear::output()

{

cout << “month = *” << month << “, day = ” << day << endl;

}

11/29/17 Matni, CS16, Fal7

26

The ‘::" Operator

e .7 is called the scope resolution operator

* Indicates what class a member function is a member of

 Example:
void DayOfYear: :output() indicates that function output is a

member of the DayofYear class

* The class name that precedes ‘::" is called a type qualifier

11/29/17 Matni, CS16, Fal7 27

‘2 Operator vs. ‘. Operator
e ‘" is used with classes to identify a member

void DayOfYear: :output()

{
// function body
}

e ‘s used with variables to identify a member

DayOfYear birthday;
birthday.output();

11/29/17 Matni, CS16, Fal7

28

Calling Member Functions

* Calling the DayOfYear member function output:
DayOfYear today, birthday;

Note that today and birthday have their

own versions of the month and day
birthday.output(); variables for use by the output function

today.output();

* Also, note how similar this is to other class member functions call-outs that
we’ve done, such as:

string Name = “Jimbo Jones”;

int stlen = Name.length();

11/29/17 Matni, CS16, Fal7 29

Member Variables/Functions
Private vs. Public

e C++ can help us by restricting the program from directly referencing certain
member variables

* Private members of a class can only be referenced within the definitions of
member functions and NOT by outside users of the class

* |f the program tries to access a private member, the compiler will give an
error message

* Private is the default setting in classes

11/29/17 Matni, CS16, Fal7 30

Public Variables

* Public variables are the only ones that can be accessed directly
by the main program

* |f we want the program to be able to change a class’ variables’
values, then they must be declared as public

11/29/17 Matni, CS16, Fal7 31

Public or Private Members

* The keyword private identifies the members of a class that can
be accessed only by member functions of the class

— Members that follow the keyword private are called private members of
the class

* The keyword public identifies the members of a class that can
be accessed from outside the class

— Members that follow the keyword public are called public members of
the class

11/29/17 Matni, CS16, Fal7 32

Example

class DayOfYear { The member functions input() and output() are
public: accessible from the main() or other functions.

void input();
void output();

private: , , ,
The member function check_results() is strictly

to be used internally in DayOfYear class
workings, as are int variables varl and var2.

void check results();
int varl, var2;

I

11/29/17 Matni, CS16, Fal7 33

Example from the Textbook: Display 10.4

* The program takes in user input on today’s date and compares
it to J.S. Bach’s birthday (i.e. a specific date of 3/21)

» Utilizes a user-defined class called DayOfYear which holds a
date and a month, but ALSO does functions like:

— Input date
— Check date against set birthday
— Outputs results

11/29/17 Matni, CS16, Fal7 34

The main() function

—

int main () {

DayOfYear today, bach_birthday;
cout << “Enter today’s date:\n”;

Note “today” & “bach_birthday”

s| are both objects of the class

DayOfYear

today.input();
cout << “Today’s date is: ”7;

\'4

today.output();

.input() and .output() are member
functions of DayOfYear class. Must
be public b/c main() is using them.

bach_birthday.set(3, 21);
cout << “Bach’s Birthday is: ”;
bach_birthday.output();

if ((today.get_month() == bach_birthday.get_month()) &&
(today.get day() == bach_birthday.get day()) {

\'4

.set()is a
public member function too.

cout << “Happy Birthday, J.S. Bach!!!\n”; }

return 0; }

11/29/17

Matni, CS16, Fal7

.get_month() and get _day() are
public member functions too.

What variable types do they look like
they return?

DayOfYear Class Definition

class DayOfYear

{
public:

void input();

void output();

void set(int newmonth, int newday); Q -y

int get month(); Why didn’t we see the

int get day(); member function

private: check_date() or the

void check date(); member variables month or

int month, day; “| day in the main() part of the
program?

} A: They’re private!

11/29/17 Matni, CS16, Fal7 36

Define All The Member Functions...
input()

void input() {

STOP!!!

}

11/29/17 Matni, CS16, Fal7

Define All The Member Functions...
input()

void DayOfYear::input()

{
cout << “Enter the month as a number: ”’;
cin >> month;
cout << “Enter the day of the month: ”’;
cin >> day;

Calling a member function!

check date();

v

Is this a private or a public one?

11/29/17 Matni, CS16, Fal7

Define All The Member Functions...
output()

void DayOfYear: :output()

{

cout
cout
cout
cout

11/29/17

<<
<<
<<
<<

“Month is: ”’;

month << endl;

“Day of the month is: ”;
day << endl;

Matni, CS16, Fal7

39

Define All The Member Functions...
set(), get_month() and get _day()

void DayOfYear::set(int newmonth, int newday)

i

month = newmonth;
day = newday;
check date();

int DayOfYear::get_month()
{ return month; }

int DayOfYear::get_day()
{ return day; }

11/29/17 Matni, CS16, Fal7

40

Define All The Member Functions...
check date()

void DayOfYear::check date()

{
if ((month < 1) || (month > 12) || (day < 1) || (day > 31))

{

cout << “Illegal date. Aborting program!\n”;
exit(1);

11/29/17 Matni, CS16, Fal7

41

Putting It All Together

e Check Display 10.4 Example in Textbook for full program.

class DayOfYear definition

main()

All the member functions of
class DayOfYear

 Looks familiar?

e Same approach with defining functions in C++

11/29/17 Matni, CS16, Fal7

Using Private Variables

* |tis a practice norm to make all member variables private
* Although, this is not strictly required...

* Private variables require member functions to perform all
changing and retrieving of values

11/29/17 Matni, CS16, Fal7

43

Using Private Variables

* |tis a practice norm to make all member variables private

* Functions that allow you to obtain the values of member variables are
called accessor functions.

— Example: get_day in class DayOfYear

* Functions that allow you to also change the values of member variables are
called mutator functions.
— Example: set in class DayOfYear

11/29/17 Matni, CS16, Fal7 44

Review: Declaring an Object

* Once a class is defined, an object of the class is declared just as variables of
any other type

— This is similar to when you declare a structure in C++

 Example: To create two objects of type Bicycle:
class Bicycle

// class definition lines

}s

Bicycle my_bike, your_bike;

11/29/17 Matni, CS16, Fal7 45

The Assignment Operator

* Objects and structures can be assigned values with the
assignment operator (=)

— Example:

DayOfYear due date, tomorrow;
tomorrow.set (11, 19);

due_date = tomorrow;

11/29/17 Matni, CS16, Fal7

46

Review: Calling Public Members

e Recall that if calling a member function from the main function
of a program, you must include the the object name:

accountl.update();

e Again, just like when we used member functions of
pre-defined classes, like string

11/29/17 Matni, CS16, Fal7 47

Calling Private Members

When a member function calls a private member function, an object name is
not used

Example:if fraction (double percent); is a private member of
the class BankAccount AND if fraction is called by another member
function called update

void BankAccount: :update()
{ balance = balance + fraction(interest rate)* balance; }

NOT: BankAccount: : fraction(interest rate)*balance;

11/29/17 Matni, CS16, Fal7 48

Constructors

* A constructor can be used to initialize member variables when an object is
declared

* A constructor is a member function that is usually public and is
automatically called when an object of the class is declared

— RULE: A constructor’s name must be the name of the class

* A constructor cannot return a value
— No return type, not even void, is used in declaring or defining a constructor

11/29/17 Matni, CS16, Fal7 49

YOUR TO-DOs

1 Lab 8 due TOMORROW (Wed. 11/29) by noon
d HW 9 due Thu. 12/7
 Lab 9 due Wed. 12/6 by noon

(J Read Ch. 13 on Linked Lists for Thursday

[Visit Prof’s and TAs’ office hours if you need help!

D S mi Ie ! And make people wonder why the heck you’re smiling

11/29/17 Matni, CS16, Fal7

50

11/29/17

</LECTURE>

Matni, CS16, Fal7

51

