Dynamic Arrays
Makefiles and Multiple File Compiles

CS 16: Solving Problems with Computers |
Lecture #14

Ziad Matni
Dept. of Computer Science, UCSB

WHAT THE NEXT 3 WEEKS LOOK LIKE

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
20-Nov 21-Nov 22-Nov 23-Nov 24-Nov
Lab 8 issued Lecture: Dynamic Arrays, Makefiles
27-Nov 28-Nov 29-Nov 30-Nov 1-Dec
Lab 9 issued Lecture: Structures and Classes |Lab8 due Lecture: Linked Lists
Hw 8 due
Hw 9 issued
4-Dec 5-Dec 6-Dec 1-Dec 8-Dec
Lab attendance is optional (Lecture: Recursion, Search/Sort |Lab 9 due Lecture: Review for Final Exam
Hw 9 due
11-Dec 12-Dec 13-Dec 14-Dec 15-Dec
FINAL EXAM, 4-7PM

11/21/17

Matni, CS16, Fal7

Grade Distribution for Midterm #2

CS 16, Fa 17 (Matni)
Average: 77 Median: 83
Midterm 1: 84 Midterm 1: 87

40

30

20

10

MgN
b‘() 9 D: 9

‘;0 g ; : 9(9
=

Refresher on Pointers

11/21/17 Matni, CS16, Fal7

Uses of the Assignment Operator on Pointers

pl = p2;
Before: After:

pl I —I 84 pl I 4
p2 I >I 99 p2 I 99

Before: After:
pl I >I 84 pl I 99
p2 I >I 99 p2 I 99

gl r‘gm

11/21/17 Matni, CS16 , Fal7

2 Main Ways to Define Pointers

int *ptr, num;

num = 5;
ptr = #
// ptr points to num

cout << *ptr;
// shows 5

int *ptr;
ptr = new int;

*ptr = 5;
// points to a place in the heap

cout << *ptr;
// shows 5

delete ptr;
// remove from the heap

11/21/17

Matni, CS16, Fal7 6

Type Definitions

A name can be assigned to a type definition, then used to
declare variables

* The keyword typedef is used to define new type names
* Syntax:

typedef Known Type Definition New Type Name;

example: typedef int* MyintPtr;

11/21/17 Matni, CS16, Fal7

Defining Pointer Types

* This helps to avoid mistakes using pointers:
e Example: typedef int* IntPtr;

Defines a new custom data type, IntPtr,
for pointer variables containing pointers to 1nt variables

IntPtr p;
is now equivalent to saying: int *p;

11/21/17 Matni, CS16, Fal7

Pointer Reference Parameters

* An advantage in using typedef to define a pointer type is seen in
call-by-reference parameter lists, like...

 Example:
void sample function(IntPtr& pointer _var);

is less confusing than:

void sample_function(int*& pointer_var);

11/21/17 Matni, CS16, Fal7

11/21/17

Dynamic Arrays

Read Ch. 9 (Pointers) in textbook

Matni, CS16, Fal7

10

Dynamic Arrays

A dynamic array is an array whose size is
determined when the program is running, not when
you write the program

Is a vector a dynamic array?

11/21/17 Matni, CS16, Fal7

11

Pointer Variables and Array Variables

e Array variables are actually pointer variables
that point to the first indexed variable!

— Remember when calling an array in a function?
e funcA(a) ... not ... funcA(a[])

: Since a is a pointer variable that points to a[0],
 Take, for instance: then issuing: p = a;
int afl@]; causes p to point to the same location as a
typedef int* IntPtr;
IntPtr p;

NOTE: Variables a and p are the same kind of variable!

11/21/17 Matni, CS16, Fal7 12

Pointer Variables As Array Variables

e Continuing with the previous example: int af1e];
Pointer variable p can be used typedef int* IntPtr;
as if it were an array variable!! IntPtr p = a;

e So, p[0], p[1], ...p[9] are all legal ways to use p

* |s there a difference between an array and a pointer?
Variable a can be used as a pointer variable BUT the pointer value
in @ cannot be changed
— So, the following is not legal:

BRI 2 // let’s say p2 is assigned a value
a = p2 // attempt to change a is NOT OK!

11/21/17 Matni, CS16, Fal7 13

Arrays and Pointer Variables

//Program to demonstrate that an array variable is a kind of pointer variable.

#include <iostream>
using namespace std;

typedef int* IntPtr;

int main()

{
IntPtr p;
int al[10];
int index;

for (index = 0; index < 10; index++)
alindex] = index;

o

3/

10

14

Arrays and Pointer Variables

//Program to demonstrate that an array variable is a kind of pointer variable.
#include <iostream>

using namespace std;

typedef int?

int main()

{

IntPtr p;

int a[10];

int index;

for (index = 0; index <
alindex] = index;

p = a;

for (index = 0; index <
cout << plindex] <<

cout << endl;

for (index = 0; +index <
plindex] = pl[index]

for (index = 0; 1index <
cout << a[index] <<

cout << endl;

return 0;

}
Output
0123456789
1234567891

IntPtr;

10; dindex++)

10; index++)

10; index++)
1;

10; index++)

"won,
’

Note that changes to the

array p are also changes to

the array a

o

3/

R 9
1] 2 9
g2 9
2| 3 10

15

Creating Dynamic Arrays

* Normal arrays require that the programmer determine the size
of the array when the program is written

— What if the programmer estimates too large?

* Memory is wasted

— What if the programmer estimates too small?

* The program may not work in some situations

 Dynamic arrays can be created with just the right size while
the program is running

11/21/17 Matni, CS16, Fal7 16

Are Dynamic Arrays aka Vectors?!

* Not exactly the same...
— vector is one implementation of dynamic arrays
— “dynamic arrays” is a bigger (more encompassing) term

* The biggest difference is:
— Vectors automatically increase their capacity
— Dynamic arrays have to be told to do this using new and delete

* The advantage of vectors is that they are well-defined and you don’t have
to worry about size changes, capacity adjustments in memory, etc...

11/21/17 Matni, CS16, Fal7 17

Creating Dynamic Arrays

* Dynamic arrays are created using the new operator

 Example:
To create an array of 10 elements of type double:

typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

d can now be used as if it were an ordinary array!

11/21/17 Matni, CS16, Fal7

18

Dynamic Arrays (cont.)

* Pointer variable d is a pointer to d[0]

 When finished with the array, it should be deleted to return memory to the
heap (freestore)
— Example showing syntax: delete [] d;

— The brackets tell C++ that a dynamic array is being deleted so it must check the size to
know how many indexed variables to remove

— Do not forget the brackets!

* Display 9.6 in the book has an example of use

11/21/17 Matni, CS16, Fal7 19

Multidimensional Dynamic Arrays

 Example: Create a 3x4 multidimensional dynamic array

e Recall: multidimensional arrays are arrays of arrays...
— So a 3x4 array = 3-element array, each of which is a 4-element array

e First create a one-dimensional dynamic array

— Start with a new definition:
typedef int* IntArrayPtr;

— Now create a dynamic array of pointers named m:
IntArrayPtr m = new IntArrayPtr[3];

11/21/17 Matni, CS16, Fal7

20

Multidimensional Dynamic Arrays

e First create a one-dimensional dynamic array

— Start with a new definition:
typedef int* IntArrayPtr;

* Now create a dynamic array of pointers named m:
IntArrayPtr m = new IntArrayPtr[3];

* For each pointer in m, create a dynamic array of integers
for (int i = 0; i < 3; i++)
m[i] = new int[4];

11/21/17 Matni, CS16, Fal7

21

A Multidimensional Dynamic Array

The dynamic array created on the previous slide could be visualized like this:

typedef int* IntArrayPtr;

IntArrayPtr m =

new IntArrayPtr[3]; m T—» l 1 1

for (int 1 = 0; 1 < 3; i++) 3

m[i] = new int[4];

IntArrayPtr

integers

11/21/17 Matni, CS16, Fal7

IntArrayPtr's

22

What do you do After You’re Done with a MDDA?

* To delete a multidimensional dynamic array

— Each call to new that created an array must have a corresponding
call to delete|]

— Example: To delete the dynamic array created on the previous slide:
for (1 =0; i < 3; i++)

delete [Im[i]; // delete the arrays of 4 int's
delete []m; // delete the array of IntArrayPtr's

11/21/17 Matni, CS16, Fal7

23

11/21/17

executable

Matni, CS16, Fal7

24

C++ Programming in Multiple Files

* Novice C++ Programming:
— All code in one .cpp source code file
— All the function definitions, plus the main() program

* Actual C++ Programming separates parts

— There are usually one or more header files with file names ending in .h that
typically contain function prototypes

— There are one or more files that contain function definitions, some with main()
functions, and others that don't contain a main() function

11/21/17 Matni, CS16, Fal7

25

Why?

Reusability
Modularization
Independent work flows
Faster re-compilations & debug

Why?

Reusability
— Some parts of the program are generic enough that we can use them over again
— Reuse is not necessarily just in one program!

Modularization
— Create stand-alone pieces of code

— Can contain sets of functions or sets of classes (or both)
— A library is a module that is in an already-compiled form (i.e. object code)

Independent work flows
— If we have multiple people working on a project, it is a good idea to break it into pieces so that
everyone can work on their files
Faster re-compilations & debug
— When you make a change, you only have to re-compile the part(s) that have changed

— Easier to debug a portion than the entire program! -

#include <etc..>

#include <etc..>

// function declarations
float linearScale(...);
float quadraticScale(...);
float bellCurve(...);

// function definitions
float linearScale(...){ ... }

float quadraticScale(...) { ...

float bellCurve(...) { ... }

int main()

{
}

// File: MyFunctions.h
#include <etc..>

float linearScale(...);
float quadraticScale(...);
float bellCurve(...);

// File: MyFunctions.cpp
#include “MyFunctions.h”
float linearScale(...){ ... }

float quadraticScale(...) { ...

float bellCurve(...) { ... }

// File: main.cpp
#include “MyFunctions.cpp”

int main()

i
}

28

// File: MyFunctions.h
#include <etc.>

float linearScale(...);
float quadraticScale(...);

Compiling Everything." float bellCurve(...);

// File: MyFunctions.cpp
#include “MyFunctions.h”

0a nearScale(... S 1
. £ :ioa: ;:adraiic;cgle(?f.) { ?.. }
g++ -c MyFunctions.cpp -o Myfunctions.o float bellCurve(...) { ... }
(Creates MyFunCt-lonS 0) zinzi\la:e m:;;z:ions.cw"
g++ -C main.cpp -0 main.o ot matn()
(creates main.o) 5

The —c option creates object code — this is machine language code,
but it’s not the entire program yet... The target object file here is always generated as a .o type

g++ -0 ProgX main.o MyFunctions.o
(creates ProgX)

The —o option creates object code — in this case, it’s object code created from other object code. The result is the entire
program in executable form. The object file here is always generated with the name specified after the —o option.

11/21/17 Matni, CS16, Fal7 29

What Do You End Up With?

MyFunctions.h Header file w/ function prototypes
MyFunctions.cpp C++ file w/ function definitions
MyFunctions.o Object file of MyFunctions.cpp
main.cpp C++ file w/ main function

main.o Object file of main.cpp

ProgX “Final” executable file

...and this is a simple example!!...
Imagine a situation with a lot more files and sub-files...
Wouldn’t it be nice to have code that generates/controls these compiles?

11/21/17 Matni, CS16, Fal7

30

Make to Tie Them All Together

* “Make” is a build automation tool

— Automatically builds executable programs and libraries
from source code

— The instructions for make are kept in a file called Makefile.

e Makefile is code written for and in Linux OS code

11/21/17 Matni, CS16, Fal7 31

Makefile
* The file must be called “makefile” (or “Makefile”)

e Put all the instructions you’re going to use in there
— There is a syntax to follow for makefiles
— Just type “make” at the prompt, instead of all the g++ commands

— There is an online manual for “make”:
From a Linux prompt, type: “man make”

* Makefiles can easily be used to do other OS-related stuff
— Like “clean up” your area, for example, by removing files

11/21/17 Matni, CS16, Fal7

32

Target “all” programs in
this project

—
dependencies 5_

i, recipe lines

S g++ -std=c++11 -Wall -c main.cpp
. TAB spaces! |

g++ -std=c++11 -Wall -o Progx main.o MyFunctions.o

| Target something specific
-- (give it a short-cut name, like ProgY)

ProgY: MyOtherFunctions.cpp

g++ -std=c++11 -Wall -c MyOtherFunctions.cpp -o ProgY

Doesn’t have to be compiling
instructions only!

rm *.o0 ProgX ProgY

11/21/17 Matni, CS16, Fal7 33

Sy nta X Of d M - ke Target “all” programs in

this project
Mﬁ. ________________ . ---------- . Dependencies that are
all: Exercisel EXerClSe2- s T declared below
Exercisel: exl.cpp
g++ -std=c++11 -Wall exl.cpp -0 exl

#This next one’s a doozy "\ #is for commenting

Exercise2: ex2.cpp
g++ -std=c++11 -Wall ex2.cpp -0 ex2

Note: These are TAB
characters in there!

11/21/17 Matni, CS16, Fal7 34

There Are Several Ways To Do
This Piece-wise Approach

e See “examplel” and “example2” in the demo code for this
lecture (demo_lectureld)

 examplel: similar to the one we just went through

 example2: by re-arranging headers, we can make one compile
command (simpler, but also more limiting)

11/21/17 Matni, CS16, Fal7 35

YOUR TO-DOs

J HW 8 due Tue. 11/28 in CLASS!
J Lab 8 due Wed. 11/29 at NOON!

[Visit Prof’s and TAs‘ office hours if you need help!

HAVE A HAPPY THANKSGIVING!!!

11/21/17 Matni, CS16, Fal7

36

11/21/17

</LECTURE>

Matni, CS16, Fal7

37

