Vectors and Pointers

CS 16: Solving Problems with Computers |
Lecture #13

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

* Midterm grades will be available on Tuesday, 11/21
— If you *need* to know it before, talk to me after class

* Your Lab #7 is due on Monday, 11/20

* You have lab on Monday, 11/20 (Lab #8 given)

* We have class on Tuesday, 11/21

 We DO NOT have class on Thursday, 11/23 (Happy Thanksgiving!)

 New Lab #8 is due Monday, 11/27 (after the break)
* New Homework #8 is due Tuesday, 11/28 (after the break)

11/16/17 Matni, CS16, Fal7

Quick Note About Strings and Integers

If str is a string type var and is “47”
and num is an int type var and is 47

* stoi(str) =47 stoi = string-to-int, found in <string>
e to_string(int) = “47” converts ints and doubles, found in <string>

Other cool conversion functions:
e stod(str) =47.0 string-to-double

11/16/17 Matni, CS16, Fal7

Quick Note About getline

* You can customize what character a getline stops “getting” info
— You can define the “character delimiter”
— By default, that’s a newline char

Example:
getline(cin, VariableX, ‘m’) //stops at the char ‘m’

If the standard input is “Hello, I must be going”,
then VariableX will be “Hello, I ”

11/16/17 Matni, CS16, Fal7 4

Vectors

* Vectors are a C++ data structure
* They are like arrays that can change size as your program runs

* You have less to worry about with vectors re: size changes and
mem allocations

e But vectors consume more memory in exchange for being
dynamic and flexible

11/16/17 Matni, CS16, Fal7

Vectors

e Vectors, like arrays, have a base type

* To declare an empty vector with base type int:
vector<int> v;
— <int> identifies vector as a template class

— You can use any base type in a template class:
vector<double> v;

vector<string> v;
elc..

11/16/17 Matni, CS16, Fal7

Accessing vector Elements

* Vectors elements are indexed starting with 0
— []'s are used to read or change the value of an item:

v[i] =42;
cout << v[i];

 But[]'s cannot be used to initialize a vector element

11/16/17 Matni, CS16, Fal7

Initializing vector Elements

* Elements are added to a vector using the vector member function
push_back()

e push_back adds an element in the next available position

* Example:

vector<double> sample;
sample.push back(0.0);
sample.push back(1.1);
sample.push_back(2.2);

11/16/17 Matni, CS16, Fal7 8

The size of a vector

 The member function size() returns the number of elements in a vector
(don’t you wish you had that with arrays!?!)

Example: To print each element of a vector:

vector<double> sample;
sample.push_back(0.0);
sample.push back(1.1);
sample.push_back(2.2);

for (int i= 0; i < sample.size(); i++)
cout << sample[i] << endl;

11/16/17 Matni, CS16, Fal7

The Type unsigned int

* The vector class member function size returns an unsigned int type of value
— Unsigned int's are non-negative integers

 Some compilers will give a warning if the previous for-loop is not changed to:

for (unsigned int i= 0; i < sample.size(); i++)
cout << sample[i] << endl;

However, g++ with —std=c++11 seems ok with plain old “int”...

11/16/17 Matni, CS16, Fal7 10

Alternate vector Initialization

e A vector constructor exists that takes an integer argument and initializes that
number of elements

— A constructor is a part of a class that is usually used for initialization purposes

 Example:

vector<int> v(10);
initializes the first 10 elementsto O
v.size()

would then return 10

* []'s can now be used to assign elements O through 9
* push_back is used to assign elements greater than 9

11/16/17 Matni, CS16, Fal7

11

The vector Library

 To use the vector class
— You have to include the vector library

#include <vector>

— Vector names are placed in the standard namespace so the usual
using directive is needed:

using namespace std;

11/16/17 Matni, CS16, Fal7

12

#include <iostream> Sample Dialogue

#include <vector> Enter a list of positive numbers.
using namespace std; Place a negative number at the end.
246 8 -1
. . 2 added. v.size() =1
int mainC) 4 added. v.size() = 2
{ 6 added. v.size() = 3
8 added. v.size() = 4

vector<int> v;
" . P " You entered:
cout << "Enter a list of positive numbers.\n > 468
<< "Place a negative number at the end.\n";

int next;
cin >> next;
while (next = 0)

{
v.push_back(next); See textbook, pg. 493
cout << next << " added. ";
cout << "v,size() = " << v.size() << endl;
cin =>> next;
}
cout << "You entered:\n";
for (unsigned int 1 = 0; 1 < v.size(); i++)

cout << v[i1] =< " ";
cout << endl;

return 0:;

Defining vector Elements

Bexond Vector Size

e Attempting to use [] to set a value beyond the size of a vector may
not generate an error, but it is not correct to do!

 Example: assume integer vector v has 3 elements in it

— Performing an assignment like v[5] = 4 isn’t the “correct” thing to do

— INSTEAD you should use push_back() enough times to get to element 5 first
before making changes

* Even though you may not get an error, you have messed around
with memory allocations and the program will probably misbehave
in other ways

11/16/17 Matni, CS16, Fal7 14

vector Efficiency

* Avector's capacity is the number of “spaces” in memory that are
put aside for vector elements

* size()is the number of elements initialized
e capacity() is the number of elements that are put aside (automatically reserved)

 When a vector runs out of space, the capacity is automatically increased!
A common scheme by the compiler is to double the size of a vector

11/16/17 Matni, CS16, Fal7 15

Controlling vector Capacity

 When efficiency is an issue and you want to control memory use (i.e.
and not rely on the compiler)...

* Use member function reserve() to increase the capacity of a vector

Example:

v.reserve(32); // at least 32 elements
v.reserve(v.size() + 10); // at least 10 more

* resize() can be used to shrink a vector

Example:
v.resize(24); //elements beyond 24 are lost

11/16/17 Matni, CS16, Fal7 16

11/16

/17

INTRO TO POINTERS

Section 9.1 in book

Memory Addresses

Address Data

e Consider the integer variable num that holds A

the value 42 . {

001E

num 001F 42

* num is assigned a place in memory. e

0021

0022

* In this example the address of that
place in memory is OxO01F

— Generally, memory addresses use hexadecimals (just not only 4 of them...)
— The “Ox” at the start is just to indicate the number is a hex

11/16/17 Matni, CS16, Fal7 18

Memory Addresses

Address Data

* The address of a variable can be obtained by putting —

the ampersand character (&) before the variable name. .. { —

* & is called the address-of operator num | OOIF 42

0020

0021

 Example: —

int num_add = #
will result in num_add to hold the value 001F (but expressed in decimal)

11/16/17 Matni, CS16, Fal7 19

Memory Address

Recall: num=42 and num add = &num = 0x001F

* Now, let’s make bar = num
— Another variable, bar, now is assigned the same value that’s in num (42)

* The variable bar will be assigned an address
— Let’s say, that address is 0x3A77
— Keep in mind, by default, we have no control over address assignments

 The variable that stores the address of another variable (like num_add)
is called a pointer.

11/16/17 Matni, CS16, Fal7 20

Dereference Operator (*)

e Pointers “point to” the variable whose address they store
* Pointers can access the variable they point to directly

e This access is done by preceding the pointer name with the
dereference operator (*)

— The operator itself can be read as “value pointed to by”

ﬁ!ecall: num=42 and num_add = &num = 0x001F
* So, while num_add = Ox001F,
*num_add =42

11/16/17 Matni, CS16, Fal7

21

Pointers

e A pointer is the memory address of a variable

* When a variable is used as a call-by-reference argument, it’s
the actual address in memory that is passed

11/16/17 Matni, CS16, Fal7

22

Pointers Tell Us (or the Compiler)
Where To Find A Variable

* Pointers "point"” to a variable by telling where the variable is

located
int val = 5;
Cnt *otr = &val;)

> OXFEN 5

Ox83 OXFE

11/16/17 Matni, CS16, Fal7

Declaring Pointers

* Pointer variables must be declared to have a pointer type

* Example:
To declare a pointer variable p that can "point" to a variable of type
double:

double *p;

* The asterisk (*) identifies p as a pointer variable

11/16/17 Matni, CS16, Fal7

24

Multiple Pointer Declarations

* To declare multiple pointers in a statement, use the asterisk
before each pointer variable

* Example:
il N2 - vl, v2;

pl and p2 point to variables of type int
vl and v2 are variables of type int

11/16/17 Matni, CS16, Fal7

25

The address-of Operator

* The & operator can be used to determine the address of a
variable which can be assigned to a pointer variable

* Example: pl = &vl;

plis now a pointer to vl
vl can be called “the variable pointed to by p1”

11/16/17 Matni, CS16, Fal7 26

A Pointer Example

cout << vl << endl;
cout << *pl << endl;

output:
42

42

11/16/17

%)

the same variable

v1 and *p1 now refer to

vl pl
0

Matni, CS16, Fal7

vl pl
42

27

Pointer Assignment

* The assignment operator = is used to assign the value of one
pointer to another

p2 =
Example: If pl still points to vl (previous slide) vi pl
then the statement m
p2 = pl;

causes *p2, *p1, and v1 all to name the same variable

11/16/17 Matni, CS16, Fal7

Caution! Pointer Assignments

 Some care is required making assignments to pointer variables

Assuming pl and p3 are pointers

pl p3; // changes the location that pl "points" to

*p3; // changes the value at the location that
// pl "points" to

11/16/17 Matni, CS16, Fal7 29

Uses of the Assignment Operator on Pointers

11/16/17

pl

p2 |

Before:

84

99

Matni, CS16, Fal7

30

Uses of the Assignment Operator on Pointers

pl = p2;
Before: After:

pl I —I 84 pl I 4
p2 I >I 99 p2 I 99

Before: After:
pl I >I 84 pl I 99
p2 I >I 99 p2 I 99

gl r‘gm

11/16/17 Matni, CS16 , Fal7

The new Operator

* Using pointers, variables can be manipulated even if there is no identifier
for them

* To create a pointer to a new “nameless” variable of type int:
pl = new int;
 The new variable is referred to as *p1

* *pl can be used anyplace an integer variable can

Example: cin >> *pl;
*pl = *pl + 7,

11/16/17 Matni, CS16, Fal7

32

Dynamic Variables

e Variables created using the new operator are called
dynamic variables

* Dynamic variables are created and destroyed while the
program is running

 We don’t have to bother with naming them, just their pointers

11/16/17 Matni, CS16, Fal7 33

Basic Pointer Manipulations

//Program to demonstrate pointers and dynamic variables.
#include <iostream>
using namespace std;

int main()
{
int *pl, *p2;

pl = new int;

*pl = 42;

p2 = pl;

cout << "#*pl == << *pl << endl;
cout << "#p2 == " << *p2 << endl;

Basic Pointer Manipulations

//Program to demonstrate pointers and dynamic variables.
#include <iostream>

using namespace std;

int main()
{
int *pl, *p2;

pl = new int;
*pl = 42;

Basic Pointer Manipulations

//Program to demonstrate pointers and dynamic variables.
#include <iostream>
using namespace std;

int main()
{
int *pl, *p2;

pl = new int;

*pl = 42;

p2 = pl;

cout << "*pl == " << *pl << endl;
cout << "#*p2 == << *p2 << endl;

*p2 = 53;
cout << "*pl == " << *pl << endl;
cout << "*p2 == " << *p2 << endl;

pl = new int;

*pl = 88;

cout << "¥pl == << *pl << endl;
cout << ""p2 == " << "p2 << endl;

cout << "Hope you got the point of this example!\n";
return 0;

}

Sample Dialogue

*p]l == 42
*n2 == 42
*pl == 53
*p2 == 53
*pl == 88
*p2 == 53

Hope you got the point of this example!

Basic Memory Management: The Heap

* An area of memory called the freestore or the heap is reserved
for dynamic variables

— New dynamic variables use memory in the heap
— If all of the heap is used, calls to new will fail
— So you need to manage your unused dynamic variables...

 Un-needed memory can be recycled

— When variables are no longer needed, they can be deleted and the
memory they used is returned to the heap

11/16/17 Matni, CS16, Fal7 37

The delete Operator

 When dynamic variables are no longer needed, delete them
to return memory to the heap

 Example:
delete p;

* The value of p is now undefined and the memory used by the variable
that p pointed to is back in the heap

11/16/17 Matni, CS16, Fal7

38

Dangling Pointers

Using delete on a pointer variable destroys the dynamic variable pointed to
(frees up memory too!)

If another pointer variable was pointing to the dynamic variable,
that variable is also now undefined

Undefined pointer variables are called dangling pointers

— Dereferencing a dangling pointer (*p) is usually disastrous

11/16/17 Matni, CS16, Fal7

39

Automatic Variables

* Asyou know: variables declared in a function are created by C++ and then
destroyed when the function ends

— These are called automatic variables because their creation and destruction
is controlled automatically

* However, the programmer must manually control creation and destruction of
pointer variables with operators new and delete

11/16/17 Matni, CS16, Fal7

40

Type Definitions
* A name can be assigned to a type definition, then used to declare variables

 The keyword typedef is used to define new type names

* Syntax:
typedef Known_Type Definition New_ Type Name;

where, Known_Type Definition can be any type

11/16/17 Matni, CS16, Fal7

41

Defining Pointer Types

* To help avoid mistakes using pointers, define a pointer type name

 Example: typedef int* IntPtr;

Defines a new type, IntPtr, for pointer variables containing
pointers to int variables

IntPtr p;
is now equivalent to saying: int *p;

11/16/17 Matni, CS16, Fal7 42

Multiple Declarations Again

* Using our new pointer type defined as
typedef int* IntPtr;
Helps prevent errors in pointer declaration

* For example, if you want to declare 2 pointers, instead of this:
int *pl, p2;
// Careful! Only pl is a pointer variable!

do this:
IntPtr pl;

int p2;
// pl and p2 are both pointer variables

11/16/17 Matni, CS16, Fal7

43

Pointer Reference Parameters

* A second advantage in using typedef to define a pointer type is seen in
parameter lists, like...

 Example:
void sample function(IntPtr& pointer _var);

is less confusing than:

void sample function(int*& pointer_var);

11/16/17 Matni, CS16, Fal7 44

YOUR TO-DOs

J HW 8 due Tue. 11/28
1 Lab 8 due Mon. 11/27

[Visit Prof’s and TAs‘ office hours if you need help!
 Rinse, Wash, Repeat

11/16/17 Matni, CS16, Fal7

45

11/16/17

</LECTURE>

Matni, CS16, Fal7

46

