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Announcements

• Midterm Exam grades out! 
– If you want to see your exams, visit your lab TA during his/her office hours
– You will only be able to view exams in their (or my) office
– You will not be allowed to take the exams out of the office
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Lecture Outline

• I/O Data Streams and File I/O

• An introduction to Objects and Member Functions

• Handling File I/O Errors

11/1/2017 Matni, CS16, Fa17 4



File I/O

• Read (input) from a file
– Usually done from beginning to the end of file (not always)

• No backing up to read something again (but you can start over)
• Similar to how it’s done from the keyboard

• Write (output) to a file
– Usually done from beginning to end of file (not always)

• No backing up to write something again (but you can start over)
• Similar to how it’s done to the screen
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Stream Variables for File I/O

You have to use “stream variables” for file I/O and they…

• Must be declared before it can be used

• Must be initialized before it can contain valid data
– Initializing a stream means connecting it to a file
– The value of the stream variable is really the filename it is connected to

• Can have their values changed
– Changing a stream value means 

disconnecting from one file and then connecting to another
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Streams and Assignment 

• Streams use special built-in (member) functions 
instead of the assignment operator to change values

• Example:
streamObjectX.open(“addressBook.txt”); // connects to file
streamObjectX.close(); // closes connection to file
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Declaring An Input-File Stream Variable

• Input-file streams are of type ifstream

• Type ifstream is defined in the fstream library
• You must use include statement and using directives

#include <fstream>
using namespace std;

• Declare an input-file stream variable with:
ifstream in_stream;
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Declaring An Output-File Stream Variable

• Ouput-file streams of are type ofstream

• Type ofstream is defined in the fstream library
• Again, you must use the include and using directives

#include <fstream>
using namespace std;

• Declare an output-file stream variable using 
ofstream out_stream;

Variable type Variable name
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Connecting To A File

• Once a stream variable is declared, 
you can connect it to a file

– Connecting a stream to a file means “opening” the file
– Use the open member function of the stream object

in_stream.open("infile.dat");

Period
Member function syntax File name on the disk

Must include a true path (relative or absolute)

Double quotes

Input 
Data File

Your C++ 
Program

Output 
Data File
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Using The Input Stream
• Once connected to a file, get input from the file using the extraction operator (>>)

– Just like with cin

Example:
ifstream in_stream;

in_stream.open(“infile.dat”); 

int one_number, another_number;

in_stream >> one_number >> another_number;

in_stream.close(); 
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The inputs are read from the 
infile.dat file

separated by either spaces or 
newline characters 



Using The Output Stream

• An output-stream works similarly using the insertion operator (<<)
– Just like with cout

Example: 
ofstream out_stream; 
out_stream.open(“outfile.dat”); 

out_stream << “one number = ” << num1 
<< “, another number = ” << num2; 

out_stream.close(); 
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The output gets written in 
the outfile.dat file 



The External File Name

• Must be the name of a file that the operating system can use/open/read/write

• Be compliant with naming conventions on your system

– Example: Don’t call an input **text** file XYZ.jpg

• Make sure the path is true

– If the file is local to your program, then no path is needed

– Otherwise use either relative or absolute path names

Example: infile.open(“../MyDirectory/inputFile_42.txt”);
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Closing a File
• After using a file, it should be closed using the .close() function

– This disconnects the stream from the file
– Close files to reduce the chance of a file being corrupted if the program terminates 

abnormally

• Example: in_stream.close();

• It is important to close an output  file if your  program later needs to read 
input from the output file

• The system will automatically close files if you forget
as long as your program ends normally!
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Member Functions

Member function: function associated with an object
• .open() is a member function of in_stream in the previous examples

– in_stream is an object of class ifstream

• Likewise, a different .open() is a member function of out_stream in the 
previous examples
– Despite having the same name!
– out_stream is an object of class ofstream
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For a list of member functions for I/O stream classes, also see:
http://www.cplusplus.com/reference/fstream/ifstream/

http://www.cplusplus.com/reference/fstream/ofstream/

http://www.cplusplus.com/reference/fstream/ifstream/
http://www.cplusplus.com/reference/fstream/ofstream/


Classes vs. Objects

• A class is a complex data type that can contain variables & functions
– Example: ifstream, ofstream, string are examples of C++ classes

– We’ll discuss classes and objects in C++ later in the quarter

• When you call up a class to use it in a program, 
you instantiate it as an object

– Example: 
ifstream MyInputStream; // MyInputStream is an object of class ifstream
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Calling a Member Function

• Calling a member function requires specifying the object 
containing the function

• The calling object is separated from the member function by 
the dot operator

• Example:   in_stream.open("infile.dat");

Calling object

Dot operator

Member function
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Errors On Opening Files

• Opening a file can fail for several reasons
– The file might not exist
– The name might be typed incorrectly
– Other reasons

• Caution: 
You may not see an error message if the call to open fails!!
– Program execution usually continues!
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Catching Stream Errors

• Member function fail(), can be used to test the success of a 
stream operation

• fail() returns a Boolean type  (True or False)

• fail() returns True (1) if the stream operation failed
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Halting Execution
• When a stream open function fails, it is generally best to stop the 

program then and there!

• The function exit(), halts a program
– exit(n) returns its argument (n) to the operating system
– exit(n) causes program execution to stop
– exit(n) is NOT a member function! It’s a function defined in cstdlib

• Exit requires the include and using directives
#include <cstdlib>
using namespace std;
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Using fail and exit

• Immediately following the call to open, 
check that the operation was successful:

in_stream.open("stuff.dat");
if( in_stream.fail( ) )

{  
cout << "Input file opening failed.\n";

// You can also use cerr instead of cout
exit(1); // Program quits right here!

}
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A Note on cerr vs cout

• Use cout for the standard output. 
• Use cerr to show errors.

• There is a difference in how the outputs are “buffered” or not.
– Has to do with how the memory is used: Not a scope of CS16…
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Formatting Output to Files

• Recall: Format output to the screen with:
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

• Similarly, format output to a file using out_stream with:
out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);
out_stream.precision(2);
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Creating Space in Output

• The width member function specifies the number of spaces for the next item
– Applies only to the next item of output

Example: 
• To print the digit 7 in four spaces and use

out_stream.width(4);
out_stream << 7 << endl;

Three of the spaces will be blank:

7 7
.setf(ios::right)

default
.setf(ios::left)
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Not Enough Width?

• What if the argument for width is too small?
– Such as specifying cout.width(3);

when the value to print is 3456.45

• The entire item is always put in output
– If too few spaces are specified, 

then spaces are added as needed
– In the example above, the entire value (3456.45) is still printed out 

as if the cout.width(3); was not there.
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Unsetting Flags

• Any flag that is set, may be unset
• Use the unsetf function

– Example:
cout.unsetf(ios::showpos);

causes the program to stop printing plus signs on positive numbers
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Manipulators

• A type of function called in a nontraditional way

• Manipulators, in turn, call member functions
– May or may not have arguments to them

• Used after the insertion operator (<<) as if the 
manipulator function call is an output item
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The setw Manipulator

• setw does the same task as member function width
– setw calls the width function to set spaces for output: only effective for one use
– Found in the library <iomanip>

• Example:    cout << "Start" << setw(4) << 10
<< setw(4) << 20 << setw(6) << 30;

produces:    Start     10      20        30

2 Spaces 4 Spaces
• The 1st setw(4) ensures 4 spaces between “Start" and 10, INCLUSIVE of the spaces taken up by 10.
• The 2nd setw(4) ensures 4 spaces between 10 and 20, INCLUSIVE of the spaces taken up by 20.
• The 3rd setw(6) ensures 6 spaces between 20 and 30, INCLUSIVE of the space taken up by 30.
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The setprecision Manipulator
• setprecision does the same task as member function precision

– Found in the library <iomanip>

• Example:   cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout << "$" << setprecision(2)

<< 10.3  << endl << "$" << 20.5 << endl;

produces:  $10.30
$20.50

• setprecision setting stays in effect until changed
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Appending Data to Output Files
• Output examples we’ve given so far create new files

– If the output file already contained data, that data is now lost!

• To append new output to the end an existing file use the constant  ios::app 
defined in the iostream library: 

outStream.open("important.txt", ios::app);
– If the file does not exist, a new file will be created

• There are other member functions that return the location in the I/O file 
where the next data will be
– Helps with customizing read and writing files
– To be used carefully! We won’t go over them here…
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Entering File Names for I/O Files

• Users can also enter the name of a file to be read/written
– As an input read by cin

• You can use regular C++ strings for the filenames, but ONLY if you 
ensure that you are compiling with C++ version 11 (or later).

• OTHERWISE, you’ll have to use C-strings
– WARNING!!!! PAY ATTENTION TO THIS!!!

• Textbook has details on how to use C-strings for filenames
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More Options for Compilations Using g++
So far, you’ve been using g++ as follows:

g++ myLittleProg.cpp –o myLittleProg

You can tell g++ to also make sure that it uses ver. 11:

g++ myLittleProg.cpp –o myLittleProg –std=c++11

Additionally, g++ can also print out “warnings” for you, not just compile errors
(this can help you in catching problems early!)

g++ myLittleProg.cpp –o myLittleProg –std=c++11 -Wall
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YOUR TO-DOs

 HW 5 due Thu. 11/2
 Lab 5 due Fri. 10/27

 Visit Prof’s and TAs‘ office hours if you need help!
 Call Mom
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