
File Input / Output Streams in C++

CS 16: Solving Problems with Computers I
Lecture #9

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

• Midterm Exam grades out!
– If you want to see your exams, visit your lab TA during his/her office hours
– You will only be able to view exams in their (or my) office
– You will not be allowed to take the exams out of the office

11/1/2017 Matni, CS16, Fa17 2

Lecture Outline

• I/O Data Streams and File I/O

• An introduction to Objects and Member Functions

• Handling File I/O Errors

11/1/2017 Matni, CS16, Fa17 4

File I/O

• Read (input) from a file
– Usually done from beginning to the end of file (not always)

• No backing up to read something again (but you can start over)
• Similar to how it’s done from the keyboard

• Write (output) to a file
– Usually done from beginning to end of file (not always)

• No backing up to write something again (but you can start over)
• Similar to how it’s done to the screen

11/1/2017 Matni, CS16, Fa17 5

Stream Variables for File I/O

You have to use “stream variables” for file I/O and they…

• Must be declared before it can be used

• Must be initialized before it can contain valid data
– Initializing a stream means connecting it to a file
– The value of the stream variable is really the filename it is connected to

• Can have their values changed
– Changing a stream value means

disconnecting from one file and then connecting to another

11/1/2017 Matni, CS16, Fa17 6

Streams and Assignment

• Streams use special built-in (member) functions
instead of the assignment operator to change values

• Example:
streamObjectX.open(“addressBook.txt”); // connects to file
streamObjectX.close(); // closes connection to file

11/1/2017 Matni, CS16, Fa17 7

Declaring An Input-File Stream Variable

• Input-file streams are of type ifstream

• Type ifstream is defined in the fstream library
• You must use include statement and using directives

#include <fstream>
using namespace std;

• Declare an input-file stream variable with:
ifstream in_stream;

11/1/2017 Matni, CS16, Fa17 8
Variable type Variable name

Declaring An Output-File Stream Variable

• Ouput-file streams of are type ofstream

• Type ofstream is defined in the fstream library
• Again, you must use the include and using directives

#include <fstream>
using namespace std;

• Declare an output-file stream variable using
ofstream out_stream;

Variable type Variable name
11/1/2017 Matni, CS16, Fa17 9

Connecting To A File

• Once a stream variable is declared,
you can connect it to a file

– Connecting a stream to a file means “opening” the file
– Use the open member function of the stream object

in_stream.open("infile.dat");

Period
Member function syntax File name on the disk

Must include a true path (relative or absolute)

Double quotes

Input
Data File

Your C++
Program

Output
Data File

11/1/2017

Using The Input Stream
• Once connected to a file, get input from the file using the extraction operator (>>)

– Just like with cin

Example:
ifstream in_stream;

in_stream.open(“infile.dat”);

int one_number, another_number;

in_stream >> one_number >> another_number;

in_stream.close();

11/1/2017 Matni, CS16, Fa17 11

The inputs are read from the
infile.dat file

separated by either spaces or
newline characters

Using The Output Stream

• An output-stream works similarly using the insertion operator (<<)
– Just like with cout

Example:
ofstream out_stream;
out_stream.open(“outfile.dat”);

out_stream << “one number = ” << num1
<< “, another number = ” << num2;

out_stream.close();
11/1/2017 Matni, CS16, Fa17 12

The output gets written in
the outfile.dat file

The External File Name

• Must be the name of a file that the operating system can use/open/read/write

• Be compliant with naming conventions on your system

– Example: Don’t call an input **text** file XYZ.jpg

• Make sure the path is true

– If the file is local to your program, then no path is needed

– Otherwise use either relative or absolute path names

Example: infile.open(“../MyDirectory/inputFile_42.txt”);

11/1/2017 Matni, CS16, Fa17 13

Closing a File
• After using a file, it should be closed using the .close() function

– This disconnects the stream from the file
– Close files to reduce the chance of a file being corrupted if the program terminates

abnormally

• Example: in_stream.close();

• It is important to close an output file if your program later needs to read
input from the output file

• The system will automatically close files if you forget
as long as your program ends normally!

11/1/2017 Matni, CS16, Fa17 14

Member Functions

Member function: function associated with an object
• .open() is a member function of in_stream in the previous examples

– in_stream is an object of class ifstream

• Likewise, a different .open() is a member function of out_stream in the
previous examples
– Despite having the same name!
– out_stream is an object of class ofstream

11/1/2017 Matni, CS16, Fa17 15

For a list of member functions for I/O stream classes, also see:
http://www.cplusplus.com/reference/fstream/ifstream/

http://www.cplusplus.com/reference/fstream/ofstream/

http://www.cplusplus.com/reference/fstream/ifstream/
http://www.cplusplus.com/reference/fstream/ofstream/

Classes vs. Objects

• A class is a complex data type that can contain variables & functions
– Example: ifstream, ofstream, string are examples of C++ classes

– We’ll discuss classes and objects in C++ later in the quarter

• When you call up a class to use it in a program,
you instantiate it as an object

– Example:
ifstream MyInputStream; // MyInputStream is an object of class ifstream

11/1/2017 Matni, CS16, Fa17 16

Calling a Member Function

• Calling a member function requires specifying the object
containing the function

• The calling object is separated from the member function by
the dot operator

• Example: in_stream.open("infile.dat");

Calling object

Dot operator

Member function

11/1/2017 17Matni, CS16, Fa17

Errors On Opening Files

• Opening a file can fail for several reasons
– The file might not exist
– The name might be typed incorrectly
– Other reasons

• Caution:
You may not see an error message if the call to open fails!!
– Program execution usually continues!

11/1/2017 Matni, CS16, Fa17 18

Catching Stream Errors

• Member function fail(), can be used to test the success of a
stream operation

• fail() returns a Boolean type (True or False)

• fail() returns True (1) if the stream operation failed

11/1/2017 Matni, CS16, Fa17 19

Halting Execution
• When a stream open function fails, it is generally best to stop the

program then and there!

• The function exit(), halts a program
– exit(n) returns its argument (n) to the operating system
– exit(n) causes program execution to stop
– exit(n) is NOT a member function! It’s a function defined in cstdlib

• Exit requires the include and using directives
#include <cstdlib>
using namespace std;

11/1/2017 Matni, CS16, Fa17 20

Using fail and exit

• Immediately following the call to open,
check that the operation was successful:

in_stream.open("stuff.dat");
if(in_stream.fail())

{
cout << "Input file opening failed.\n";

// You can also use cerr instead of cout
exit(1); // Program quits right here!

}

11/1/2017 Matni, CS16, Fa17 21

A Note on cerr vs cout

• Use cout for the standard output.
• Use cerr to show errors.

• There is a difference in how the outputs are “buffered” or not.
– Has to do with how the memory is used: Not a scope of CS16…

11/1/2017 Matni, CS16, Fa17 22

Formatting Output to Files

• Recall: Format output to the screen with:
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

• Similarly, format output to a file using out_stream with:
out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);
out_stream.precision(2);

11/1/2017 Matni, CS16, Fa17 23

11/1/2017 Matni, CS16, Fa17 24

Creating Space in Output

• The width member function specifies the number of spaces for the next item
– Applies only to the next item of output

Example:
• To print the digit 7 in four spaces and use

out_stream.width(4);
out_stream << 7 << endl;

Three of the spaces will be blank:

7 7
.setf(ios::right)

default
.setf(ios::left)

11/1/2017 25

Not Enough Width?

• What if the argument for width is too small?
– Such as specifying cout.width(3);

when the value to print is 3456.45

• The entire item is always put in output
– If too few spaces are specified,

then spaces are added as needed
– In the example above, the entire value (3456.45) is still printed out

as if the cout.width(3); was not there.

11/1/2017 Matni, CS16, Fa17 26

Unsetting Flags

• Any flag that is set, may be unset
• Use the unsetf function

– Example:
cout.unsetf(ios::showpos);

causes the program to stop printing plus signs on positive numbers

11/1/2017 Matni, CS16, Fa17 27

Manipulators

• A type of function called in a nontraditional way

• Manipulators, in turn, call member functions
– May or may not have arguments to them

• Used after the insertion operator (<<) as if the
manipulator function call is an output item

11/1/2017 Matni, CS16, Fa17 28

The setw Manipulator

• setw does the same task as member function width
– setw calls the width function to set spaces for output: only effective for one use
– Found in the library <iomanip>

• Example: cout << "Start" << setw(4) << 10
<< setw(4) << 20 << setw(6) << 30;

produces: Start 10 20 30

2 Spaces 4 Spaces
• The 1st setw(4) ensures 4 spaces between “Start" and 10, INCLUSIVE of the spaces taken up by 10.
• The 2nd setw(4) ensures 4 spaces between 10 and 20, INCLUSIVE of the spaces taken up by 20.
• The 3rd setw(6) ensures 6 spaces between 20 and 30, INCLUSIVE of the space taken up by 30.

2911/1/2017 Matni, CS16, Fa17

The setprecision Manipulator
• setprecision does the same task as member function precision

– Found in the library <iomanip>

• Example: cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout << "$" << setprecision(2)

<< 10.3 << endl << "$" << 20.5 << endl;

produces: $10.30
$20.50

• setprecision setting stays in effect until changed

11/1/2017 Matni, CS16, Fa17 30

Appending Data to Output Files
• Output examples we’ve given so far create new files

– If the output file already contained data, that data is now lost!

• To append new output to the end an existing file use the constant ios::app
defined in the iostream library:

outStream.open("important.txt", ios::app);
– If the file does not exist, a new file will be created

• There are other member functions that return the location in the I/O file
where the next data will be
– Helps with customizing read and writing files
– To be used carefully! We won’t go over them here…

11/1/2017 Matni, CS16, Fa17 31

Entering File Names for I/O Files

• Users can also enter the name of a file to be read/written
– As an input read by cin

• You can use regular C++ strings for the filenames, but ONLY if you
ensure that you are compiling with C++ version 11 (or later).

• OTHERWISE, you’ll have to use C-strings
– WARNING!!!! PAY ATTENTION TO THIS!!!

• Textbook has details on how to use C-strings for filenames
11/1/2017 Matni, CS16, Fa17 32

More Options for Compilations Using g++
So far, you’ve been using g++ as follows:

g++ myLittleProg.cpp –o myLittleProg

You can tell g++ to also make sure that it uses ver. 11:

g++ myLittleProg.cpp –o myLittleProg –std=c++11

Additionally, g++ can also print out “warnings” for you, not just compile errors
(this can help you in catching problems early!)

g++ myLittleProg.cpp –o myLittleProg –std=c++11 -Wall

11/1/2017 Matni, CS16, Fa17 33

YOUR TO-DOs

 HW 5 due Thu. 11/2
 Lab 5 due Fri. 10/27

 Visit Prof’s and TAs‘ office hours if you need help!
 Call Mom

11/1/2017 Matni, CS16, Fa17 34

11/1/2017 Matni, CS16, Fa17 35

	File Input / Output Streams in C++
	Announcements
	Slide Number 3
	Lecture Outline
	File I/O
	Stream Variables for File I/O
	Streams and Assignment
	Declaring An Input-File Stream Variable
	Declaring An Output-File Stream Variable
	Connecting To A File
	Using The Input Stream
	Using The Output Stream
	The External File Name
	Closing a File
	Member Functions
	Classes vs. Objects
	Calling a Member Function
	Errors On Opening Files
	Catching Stream Errors
	Halting Execution
	Using fail and exit
	A Note on cerr vs cout
	Formatting Output to Files
	Slide Number 24
	Creating Space in Output
	Not Enough Width?
	Unsetting Flags
	Manipulators
	The setw Manipulator
	The setprecision Manipulator
	Appending Data to Output Files
	Entering File Names for I/O Files
	More Options for Compilations Using g++
	YOUR TO-DOs
	Slide Number 35

