Design and Debug: Essential Concepts
Numerical Conversions

CS 16: Solving Problems with Computers
Lecture #7

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

 We are grading your midterms this week!
— So far, so good...

* A reminder about Labs
— Please make sure to SIGN IN (or you will be counted as absent)
— Please make sure to COLLECT YOUR HW in lab

* Next lab is a required pair programming assighnment
— You are required to work with a partner for Lab 5 (next week)
— More on that later...

10/24/17 Matni, CS16, Fal7

Programming and submit.cs:
The Deuvil is in the Details...

Change Tests: 1_general -- Your program's output did not match the expected.

Correct Output Your Output

Correct Output

Your Output

««.[<<Remaining diff not shown>> ««.[<<Remaining diff not shown>>

Lecture Outline

* Design and Debug Tips
— Designing and Debugging Loops
— The Mighty TRACE
— Designing and Debugging Functions

* Numerical Conversions
— The Positional Notation
— Going from Binary to Decimal (and Octal, and Hexadecimal)
— Going from Decimal to... anything...

10/24/17 Matni, CS16, Fal7

Designing Loops

What do | need to know?

* What am | doing inside the loop?

 What are my initializing statements?

 What are the conditions for ending the loop?

10/24/17 Matni, CS16, Fal7

Exit on Flag Condition

* Loops can be ended when a particular flag condition exists
— Applies to while and do-while loops

— Flag: A variable that changes value to indicate that some event has
taken place

— Examples of exit on a flag condition for input
* List ended with a sentinel value
* Running out of input

10/24/17 Matni, CS16, Fal7

Exit on Flag Example

e Consider this loop to identify a student with a grade of 90 or better
and think of how it’s logically limited.

g m = Ak //student ID number
grade = compute_grade(n); // compute grade() is a function
while (grade < 90)
{
grade = compute_grade(n);
cout <<"Student number "<< n <<" has a score of " << grade << endl;

n++;

10/24/17 Matni, CS16, Fal7

The Problem

int n = 1; //student ID number

grade = compute_grade(n); // compute_grade() is a function
while (grade < 90)

* The loop on the previous O e comnte sradet
Slide might not Stop at the fijt <<"Stuzent_number‘ ":< n <<" has a score of " << grade << endl;
end of the list of students o
if no student has a grade of 90 or higher!

* |tis a good idea to use a second flag to ensure that there are
still students to consider

* The code on the following slide shows a better solution

10/24/17 Matni, CS16, Fal7 8

Exit on Flag Example

e [= ks //student ID number
grade = compute grade(n); // compute grade() is a function
while ((grade < 90) && (n < number_ of students))

{
grade = compute_grade(n);
cout <<"Student number "<< n <<" has a score of " << grade << endl;

n++;

10/24/17 Matni, CS16, Fal7

Debugging Loops

Common errors involving loops include:

* Off-by-one errors in which the loop executes one too many or
one too few times

* Infinite loops usually result from a mistake in the Boolean
expression that controls the loop

10/24/17 Matni, CS16, Fal7

10

Fixing Off-By-One Errors

* Check your comparison: should ithe < or <= ?
—Saw a few mistakes like this on the exam ®

 Check that the var. initialization uses the correct value

10/24/17 Matni, CS16, Fal7 11

Fixing Infinite Loops

* Common mistake: check the direction of inequalities:
shouldluse < or > ?

e Test for < or >in your loops,
rather than equality (==) or inequality (!=)

10/24/17 Matni, CS16, Fal7

12

More Loop Debugging Tips: Tracing

e Be sure that the mistake is really in the loop

* Trace the variable to observe how it changes

—Tracing a variable is watching its value change during execution.

— Best way to do this is to insert cout statements
and have the program show you the variable
at every iteration of the loop.

10/24/17 Matni, CS16, Fal7 13

Debugging Example

* The following code is supposed to conclude with the variable
“product” equal to the product of the numbers 2 through 5

—i.e. 2x3 x4 x5, which, of course, is 120.

e What could go wrong?! © Where might you put a trace?

int next = 2, product = 1;
while (next < 5)

- DEMO!

product = product * next;

¥

Using variable tracing

10/24/17 Matni, CS16, Fal7 14

Loop Testing Guidelines

* Every time a program is changed, it should be re-tested
— Changing one part may require a change to another

e Every loop should at least be tested using input to cause:

—_

— Zero iterations of the loop body

— One iteration of the loop body ot Qf L2l
——you likely have a

— One less than the maximum number of iterations very robust loop

— The maximum number of iterations il

10/24/17 Matni, CS16, Fal7 15

Starting Over

 Sometimes it is more efficient to throw out a buggy program
and start over!

— The new program will be easier to read
— The new program is less likely to be as buggy

— You may develop a working program faster than if you work to
repair the bad code

* The lessons learned in the buggy code
will help you design a better program faster

10/24/17 Matni, CS16, Fal7

16

Testing and Debugging Functions

e Each function should be tested as a separate unit
e Testing individual functions facilitates finding mistakes
* “Driver Programs” allow testing of individual functions

* Once a function is tested, it can be used in the driver program
to test other functions

10/24/17 Matni, CS16, Fal7

17

Example of a Driver Test Program

int maing

{
using namespace std;
double wholesale_ cost;
int shelf_time;
char ans;
cout.setf(ios: :Fixed);
cout.setf(ios: :showpoint);
cout.precision(2);
do
i
get_input{wholesale_cost, shelf_time);
cout == "wholesale cost is now 3"
<= wholesale_cost << endl;
cout == “"Days until sold is now “
== shelf _time == endl;
cout == “"Test again?"
<= " (Type v for ves or n for nod: ";
cin == ans;
cout == endl;
} while (ans == "y" || ans == 'Y');
return 0;
1

10/24/17 Matni, CS16, Fal7

18

Stubs

 When a function being tested
calls other functions that are not yet tested,
use a stub

» Astub is a simplified version of a function

e Stubs usually provide values for testing rather than perform the intended
calculation

— i.e. they’re fake functions

e Stubs should be so simple
that you have full confidence they will perform correctly

10/24/17 Matni, CS16, Fal7 19

O O NO UL D WDN R

e e
A W NMNER O

#include <iostream>

#include <cmath>

use namespace std;

double WeirdCalc(double x, double y);

int main() {
double n, m, w;
cout << “Enter the 2 values for weird calculation:
cin >> n >> m;
w = WeirdCalc(n, m) / (37 - pow(n/m, m/n));
cout << “The answer is: ” << w << endl;
return 0;

10/24/17 Matni, CS16, Fal7

2.

)

Stub Example

20

O O NO UL D WDN R

R R R R R RRRRR
O 00NV D WNRO®

#include <iostream>
#include <cmath>

use namespace std; StUb Example

double WeirdCalc(double x, double y);

int main() {
double n, m, w;
cout << “Enter the 2 values for weird calculation: *;
cin >> n >> m;
w = WeirdCalc(n, m) / (37 - pow(n/m, m/n));
cout << “The answer is: ” << w << endl;
return 0;

}

double WeirdCalc(double x, double y) // Make WeirdCalc a stub - just for testing!!

{
//return ((sqrt(pow(3*x, y%(max(x,y))) - sgrt(5*y/(x-6)) + 0.5*pow((x+y), -0.3);
return (7);

10/24/17 Matni, CS16, Fal7 21

Debugging Your Code

* Keep an open mind
— Don’t assume the bug is in a particular location

 Don’t randomly change code without understanding what you
are doing until the program works

— This strategy may work for the first few small programs you write
but it is doomed to failure for any programs of moderate complexity

* Show the program to someone else

10/24/17 Matni, CS16, Fal7 22

General Debugging Techniques

e Check for common errors, for example:
— Local vs. Reference Parameters
— = instead of ==
— Did you use && when you meant | |?
— These are typically errors that might not get flagged by a compiler

* Localize the error

— Narrow down bugs by using cout statements to reveal internal (hidden) values of
variables

— Once you reveal the bug and fix it, remove the cout statements

* Your textbook has great debugging examples

10/24/17 Matni, CS16, Fal7

23

Example from the Midterm

cout << "Enter 2 integer numbers. To quit, make either of them zero: ";

cin >> numl >> num2;

||
while (_(numl !=8) o (num2 !=08))
{

if (numl > num2) cout << "The sum is: " <<
else if (numl < num2) cout << "The product
else cout << "You entered the same number,

cout << "Enter 2 integer numbers. To quit,
cin >> numl >> num2;
} // end while

cout << "Goodbye!";
Matni, CS16, Fal7

numl + num2 << endl;

is: << numl*num2 << endl;
" << numl << endl;

make either of them zero:

J

24

Example from the Midterm

cout << "Enter 2 integer numbers. To quit, make either of them zero: ";

J
cin >> numl >> num2; Because you want the cases when either var is

zero. That is, if num1 is zero — it doesn’t matter

while (_(numl != 9) && (num2 != 08)) what num2 is doing — just quit
{ (same for if num2 is zero)
if (numl > num2) cout << "The sum is: " << numl + num2 << endl;
else if (numl < num2) cout << "The product is: " << numl*num2 << endl;

else cout << "You entered the same number, " << numl << endl;

cout << "Enter 2 integer numbers. To quit, make either of them zero: ";
cin >> numl >> num2;

} // end while Otherwise, if you use the [| operator, then you are

saying that while either var is zero, keep going thru

— thic i i ian!!!
cout << "Goodbye!"; the loop - this is not the intended design!!!

Matni, CS16, Fal7 25

Other Debugging Techniques

* Use a debugger tool
— Typically part of an IDE (integrated development environment)

— Allows you to stop and step through a program line-by-line while
inspecting variables

e Use the assert macro

— Can be used to test pre or post conditions
#include <cassert>
assert(boolean expression)

— If the Boolean is false then the program will abort
* Not a good idea to keep in the program once you’re done w/ it!!!

10/24/17 Matni, CS16, Fal7 26

Assert Example

e Denominator should not be zero in Newton’s Method

// Approximates the square root of n using Newton's

// Iteration.

// Precondition: n 1is positive, num_iterations 1is positive
// Postcondition: returns the square root of n

double newton_sqroot(double n, 7int num_iterations)

{

double answer = 1;
int 1 = 03

assert((n > 0) && (num_1iterations> 0));
while (i <num_iterations)

{

answer = 0.5 * (answer + n / answer);
T++;

}

return answer;

}

10/24/17 Matni, CS16, Fal7 27

Pre- and Post-Conditions

Concepts of pre-condition and post-condition in functions
The textbook recommends you use these concepts when making comments

Pre-condition: What must “be” before you call a function
e States what is assumed to be true when the function is called
* Function should not be used unless the precondition holds

Post-condition: What the function will do once it is called
* Describes the effect of the function call

* Tells what will be true after the function is executed
(when the precondition holds)

e |f the function returns a value, that value is described
* Changes to call-by-reference parameters are described

10/24/17 Matni, CS16, Fal7

28

Why use Pre- and Post-conditions?

* Pre-conditions and post-conditions should be the first step in
designing a function

» Specify what a function should do BEFORE designing it

— This minimizes design errors and time wasted writing code that doesn’t
match the task at hand

* Read textbook’s “Supermarket Pricing” case study
— Ch. 5, from pg. 276 — 281

10/24/17 Matni, CS16, Fal7

29

10/24/17

Numerical Conversions in CS

Matni, CS16, Fal7

30

Counting Numbers in Different Bases

* We “normally” count in 10s
— Base 10: decimal numbers
— Number symbols are 0 thru 9

* Computers countin 2s
— Base 2: binary numbers
— Number symbols are 0 and 1
— Represented with 1 bit (2! = 2)

10/24/17

e QOther convenient bases in
computer architecture:

Matni, CS16, Fal7

Base 8: octal numbers
Number symbols are 0 thru 7
Represented with 3 bits (23 = 8)

Base 16: hexadecimal numbers

Number symbols are O thru F
« A=10,B=11,C=12,D=13,E=14,F=15

Represented with 4 bits (24 = 16)

Why are 4 bit representations
convenient???

31

Natural Numbers

Counting 642 as 600 + 40 + 2
is counting in TENS (aka BASE 10)

There are 6 HUNDREDS
There are 4 TENS

6 4 2
There are 2 ONES == Ik 642 = 600 + 40 + 2

2nd 1st
position position

oth
position

10/24/17 Matni, CS16, Fal7

Positional Notation in Decimal

Continuing with our example...
642 in base 10 positional notation is:

6x102= 6 x100 =600
+4x101 = 4x10 =40
+2x100= 2x1 =2 = 642 in base 10

10/24/17 Matni, CS16, Fal7

33

Positional Notation

Anything = DEC

What if “642” is expressed in the base of 13?

6x132 = 6x169 =1014
+4 x131 4x13 =52
+2x13° 2x1 = 2
= 1068 in base 10

So, “642” in base 13 is equivalent to
“1068"” in base 10

10/24/17 Matni, CS16, Fal7 34

Wavie, aliens with
13 ngers???

=

-
-

L/
9/

-~
.

10/24/17

Positional Notation in Binary

11011 in base 2 positional notation is:

1x24 =1x16=16
+1x23 =1x8 =8
+1x22 =1x4 =4
+0x21 =1x2 =0
+1x20 =1x1 =1

S0,1011inbase2is16+8+0+2 + 1 =27 in base 10

10/24/17 Matni, CS16, Fal7

Converting Binary to Decimal

Q: What is the decimal equivalent of the binary number 11011007

A: Look for the position of the digits in the number.
This one has 7 digits, therefore positions O thru 6

16

24

23

22

21

20

1 1
64 32
1x2° = 1x64 =64 2° 2°
+1x2° =1x32 =32
+0x2*=0x16 =0
+1x23=1x8 =8
+1x22 =1x4 =4
+0x2t =0x2 =0
+0x2°=0x1 =0
10/24/17 =108 in base 10

38

Other Relevant Bases

* |n Computer Science/Engineering, other binary-related
numerical bases are used too.

e OCTAL: Base 8 (note that 8 is 23)
— Uses the symbols: 0,1, 2, 3,4,5,6, 7

e HEXADECIMAL: Base 16(note that 16 is 24)
— Uses the symbols: 0, 1, 2,3,4,5,6,7,8,9,A,B,C,D, E, F

10/24/17 Matni, CS16, Fal7

39

Converting Binary to Octal and Hexadecimal
(or any base that’s a power of 2)

* Binaryis 1 bit
e Octalis 3 bits (23=8) octal is base 8
 Hexadecimalis 4 bits (2% = 16) hex is base 16

e Use the “group the bits” technique
— Always start from the least significant digit
— Group every 3 bits together for bin = oct
— Group every 4 bits together for bin = hex

10/24/17 Matni, CS16, Fal7 40

...to octal:

to Octal and Hexadecimal

* Take the example: 10100110 Decimal]

10

100

110

2

4

)

...to hexadecimal:

10

10/0

110

10/24/17

10

6

Converting Binary

symbols

246 in octal

A6 in hexadecimal

Matni, CS16, Fal7

Hex.
symbols

MM m| O ol | >DPDlOo|w|N]|oaoaojlnn|b|WIN|R|O

41

Converting Decimal to Other Bases

Algorithm for converting number in base 10 to other bases
While (the quotient is not zero)

1. Divide the decimal number by the new base
2. Make the remainder the next digit to the left in the answer
3. Replace the original decimal number with the

4. Repeat until your quotient 1s zero
EXAMPLE:

Convert the decimal (base 10) number 79 into hexadecimal (base 16)

79/16=4R15 (15 in hex s the symbol “F”) The answer is: 4F
4/16=0R4

10/24/17 Matni, CS16, Fal7 42

Converting Decimal into Binary

Convert 54 (base 10) into binary and hex:
e 54/2=27R0

e 27/2=13R1 Sanity check:

e 13/2=6R1 110110
*6/2=3RO =2+4+16+ 32
e 3/2=1R1 =54

e 1/2=0R1

54 (decimal) = 110110 (binary)
= 36 (hex)

10/24/17 Matni, CS16, Fal7 43

10/24/17

Matni, CS16, Fal7

44

YOUR TO-DOs

A Turn in HW4 on Thursday

 Lab 4 due Fri. 10/27

 HWS5 will be released on Thursday, will be due in 1 week.
[Visit Prof’s and TAs’ office hours if you need help!

10/24/17 Matni, CS16, Fal7

45

10/24/17

</LECTURE>

Matni, CS16, Fal7

46

