Functions in C++
Part 2

CS 16: Solving Problems with Computers |
Lecture #5

Ziad Matni
Dept. of Computer Science, UCSB

Announcements

e NO more adds for this class

* |f you want to switch labs, switch with SOMEONE
— The TAs have to approve

* Your 15t Midterm Exam is NEXT THURSDAY (10/19)!!!
— Omgomgomgomgomgomgomgomgomgomg

10/12/17 Matni, CS16, Fal7

MIDTERM #1 1S COMING! OCtOber 19!

* Material: Everything we’ve done, incl. up to Tue. 10/17
— Homework, Labs, Lectures, Textbook
* Thursday, 10/19 in this classroom
e Starts at 2:00pm **SHARP** (come early)
* Ends at 3:15pm **SHARP**
 BRING YOUR STUDENT IDs WITH YOU!!!
e Closed book: no calculators, no phones, no computers
* Only 1 sheet (single-sided) of written notes
— Must be no bigger than 8.5” x 11”
— You have to turn it in with the exam
You will write your answers on the exam sheet itself.

10/12/17 Matni, CS16, Fal7 3

What’s on the Midterm#1?
From the Lectures, inc/uding...

* Intro to Computers, Programming, and C++ * Loops: for, while, do-while

e Variables and Assignments * Types of Errors in Programming
* Boolean Expressions * Multiway Branching and the switch
(comparison of variables) command
* |nput and Output on Standard Devices * Generating Random Numbers
(cout, cin) * Functions in C++:
* Data Types, Escape Sequences, pre-defined, user-defined
Formatting Decimal void functions, the main() function
 Arithmetic Operations and their Priorities call-by-ref vs. call-by-value, overloading
 Boolean Logic Operators * Command Line Inputs to C++ Programs

* Flow of Control & Conditional Statements * Numerical Conversions

10/12/17 Matni, CS16, Sp17 4

Midterm Prep

1. Lecture slides
2. Homework problems
3. Lab programs

4. Book chapters 1 thru 5*

*check the lecture slides with it!!

10/12/17 Matni, CS16, Fal7

Lecture Outline

 void functions

e Call-by-value vs. Call-by-reference Functions
* Overloading Functions

e Command-line Arguments

10/12/17 Matni, CS16, Fal7

Let’s Go Over Some of the Demos

...from the last lecture...

10/12/17 Matni, CS16, Fal7

void Functions

 Sometimes, we want sub-tasks to be implemented as functions.
— Repetition involved

e A subtask might produce:
— 1 or more values --Or-- no values at all!

 We just described how to implement functions that return 1 value

10/12/17 Matni, CS16, Fal7 8

Simple void Function Example

// void function example
#include <iostream>
using namespace std;

void printmessage ()

{
}

cout << "I'm a function!";

VoAU B_WNH

10 int main ()
11 |4

12 printmessage ();
13|}

10/12/17 Matni, CS16, Fal7

void Function Definition

Example: A program does °F €= °C conversion and then wants to print out
the results. It does this last thing with a void function.

void show results(double f degrees, double c_degrees)

{

cout << f_degrees << “ degrees Fahrenheit is equivalent to ”
<< c_degrees << “ degrees Celsius.” << endl;

return;

}

10/12/1 10

Calling void Functions

* void-function calls are, essentially, executable statements

— They do not need to be part of another statement
— They end with a semi-colon

void show_results(double f_degrees, double c_degrees)
{

= cout << f_degrees << “ degrees Fahrenheit is equivalent to ”
e Example. << c_degrees << “ degrees Celsius.” << endl;
}

Call it with: show_results(32.5, 90.3);
NOT with: cout << show_results(32.5, 90.3);

This distinction is important and a
typical rookie mistake to make!!!

10/12/17 Matni, CS16, Fal7

Will not compile!!

11

void Functions: To Return or Not Return?

* |n void functions, we need “return” to signal the end of the function
— Is it strictly necessary for that? No, it’s optional

e Can we use “return” to signal an “interrupt” to the function...
— ...and end prematurely? Yes!

 Example: What if a branch of an if-else statement requires

that the function ends to avoid producing more output, or creating a
mathematical error?

— See example on next page of a void function that avoids division by zero
with a return statement

10/12/17 Matni, CS16, Fal7 12

10/12/17

Use of returnin a void Function

Function Declaration

void ice_cream_division(int number, double total_weight);
//0utputs instructions for dividing total_weight ounces of
//ice cream among number customers.

//If number is 0, nothing is done.

Function Definition

//Definition uses iostream:
void ice_cream_division(int number, double total_weight)

{

using namespace std;
double portion;

1f (number == 0) If number is 0, then the
return: —e——""__ function execution ends here.

portion = total_weight/number;

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << "Each one receives
<< portion << " ounces of ice cream.'

<< endl;

13

The main Function in C++

* The main function in a program is used like a void function
— So why do we have to end the program with a return statement?
— And why isn’t it DEFINED as a void function?

* The main function is defined to return a value of type int,
therefore a return is needed
— It’s a matter of what is “legal” and “not legal” in C++
— void main () is not legal in C++ !! (this ain’t Java)
— Most compilers will not accept a void main (none of the ones we’re using, anyway...)
— Solution? Stick to what’s legal: it’s ALWAYS: int main ()

10/12/17 Matni, CS16, Fal7 14

The main Function in C++

 The C++ standard also says the return 0 can be omitted, but
many compilers still require it

* No compiler will complain if you have the return 0 in main()

e Solution?
Always include return 0 in the main function to be safe
— Because you don’t control everyone’s compiler choices!

10/12/17 Matni, CS16, Fal7

15

I DS O}
Class Exercise DEMNO -

* Let’s write a program together that contains a function, called FallTime,
that calculates the time it takes for a mass to be dropped from a variable

height h, given the formula: - \/g = sqrt(0.2038 d)

Algorithm:

1. FallTime will take as argument, h. It will return the value of t.
2. main() will ask the user for h (in meters).

3. main() will call FallTime(h).
4.

main() will print out the value of FallTime(h) (in seconds).

10/12/17 Matni, CS16, Fal7 16

Call-by-Value vs Call-by-Reference

 When you call a function, your arguments are getting passed on
as values

— At least, with what we’ve seen so far...
— The call func(a, b) passes on (into the function) the values of aand b

* You can also call a function with your arguments used as
references to the actual variable location in memory

— So, you're not passing the variable itself, but it’s location in memory!

— Why would we want to do that? ANS: Vars inside functions a local.
What if we wanted them to change outside of it?

10/12/17 Matni, CS16, Fal7 17

Call-by-Reference Parameters

“« ” //inside main..
Call-by-reference” parameters allow us to change the

variable used in the function call inta=5, b =5;
“Call-by-value” parameters do NOT change the funi(a);
variable used in the function call fun2(b);

cout << “a, b =”
<< a << “, ” << b << endl;
In the example shown here, the output would be:

9
9 void funl (int x) {

X += 4;
a, b=5,9 cout << X << endl;

} // call-by-value

We use the ampersand symbol (&) to distinguish a
variable as being called-by-reference, in a function void fun2 (int &x) {
definition X 4= 4;

cout << x << endl;
10/12/17 Matni, CS16, Fa17 } // call-by-reference

Call-By-Reference Details

« The memory location of the argument variable is given to the formal parameter
— Not the argument variable itself!

 Whatever is done to a formal parameter inside the function,
is actually done to the value at the memory location of the argument variable

— A subtle, but important, difference!

10/12/17 Matni, CS16, Fal7 19

Call-by-Reference Behavior

* Assume int variables first and second are assigned memory addresses 1036 and 1040
(this is usually done by the compiler. Also, these are made-up mem addresses)

* Now a function call executes: get_numbers(first, second);

e The function is defined as:
void get_numbers(int &first, int &second) {
cout << “Enter two integers: ”’;
cin >> first >> second; }

e The function may as well say:

void get_numbers(the int var at mem Location 1036, the int var at mem Location 1040) {
cout << “Enter two integers: ”
cin >> the variable at memory location 1036;
>> the variable at memory Llocation 1040; }

10/12/17 Matni, CS16, Fal7 20

Example: swap_values

void swap(int &variablel, int &variable2)

{

int temp = variablel;
variablel variable2;
variable2 = temp;

}

e If called with swap(first _num, second num);
— The values of first_numand second_num are swapped
— Can ONLY do this if the function is call-by-reference

10/12/17 Matni, CS16, Fal7

21

Mixed Parameter Lists

e Call-by-value and call-by-reference parameters
can be mixed in the same function

* Example:
void good_stuff(int &parl, int par2, double &par3);

— parl and par3 are call-by-reference formal parameters
* Changes in parl and par3 change the argument variable

— par2 is a call-by-value formal parameter
* Changes in par2 do not change the argument variable

10/12/17 Matni, CS16, Fal7

22

Caution! Inadvertent Local Variables

* Forgetting the ampersand (&) creates a call-by-value parameter
— The value of the variable will not be changed
— You just ensured that a variable will remain local to the function
(when your intention was NOT to do that!)

* Hard error to debug/find... because it looks right!

10/12/17 Matni, CS16, Fal7 23

YOUR TO-DOs

U Finish reading up Chapter 5
M Turn in Lab2 by TOMORROW AT NOON (Fri, 10/13)

J Start on HW3
1 Visit Prof’s and TAs’ office hours if you need help!

 Did you drink enough water today?

10/12/17 Matni, CS16, Fal7

24

10/12/17

</LECTURE>

Matni, CS16, Fal7

25

