
More Flow Control
Functions in C++

CS 16: Solving Problems with Computers I
Lecture #4

Ziad Matni
Dept. of Computer Science, UCSB

CS16 Registration

REGISTRATION IS CLOSED FOR THIS CLASS

No more adds

10/10/2017 Matni, CS16, Fa17 2

• Material: Everything we’ve done, incl. up to Tue. 10/17

– Homework, Labs, Lectures, Textbook

• Thursday, 10/19 in this classroom

• Starts at 2:00pm **SHARP** (come early)

• BRING YOUR STUDENT IDs WITH YOU!!!

• Closed book: no calculators, no phones, no computers

• Only 1 sheet (single-sided) of written notes

– Must be no bigger than 8.5” x 11”

– You have to turn it in with the exam

• You will write your answers on the exam sheet itself.

10/10/2017 Matni, CS16, Fa17 3

Lecture Outline

• Multiway Branching and the switch command

• Local vs. Global Variables

• Pre-Defined Functions

• User-Defined Functions

• Void Functions

10/10/2017 Matni, CS16, Fa17 4

Compile vs. Run Time Errors

Compile Time Errors

• Errors that occur during compilation of a program.

Run Time Errors

• Errors that occur during the execution of a program

• Runtime errors indicate bugs in the program (bad design) or unanticipated
problems (like running out of memory)

• Examples:
– Dividing by zero

– Bad memory calls in the program (bad memory address)

– Segmentation errors (memory over-flow)

10/10/2017 Matni, CS16, Fa17 5

Short-Circuit Evaluation

• Avoid possible run time errors by using the right Boolean expressions

• If you strategically use the && operator, then some Boolean expressions do
not need to be completely evaluated

– Especially if they can potentially cause run time errors

– This is known as “short-circuit evaluation”

• Consider this if-statement:
if (pieces / kids >= 2) … etc… what’s a potential problem?

FIX:

if ((kids != 0) && (pieces / kids >= 2)) … etc…

10/10/2017 Matni, CS16, Fa17 6

ANS: potential divide-by-0

Multiway Branching

• Nesting (embedding) one if/else statement in another.

if (count < 10) {

if (x < y)

cout << x << " is less than " << y;

else

cout << y << " is less than " << x;

}

• Note the tab indentation at each level of nesting.

10/10/2017 Matni, CS16, Fa17 7

Defaults in Nested IF/ELSE Statements

• When the conditions tested in an if-else-statement are mutually exclusive,
the final if-else can sometimes be omitted

EXAMPLE:

10/10/2017 Matni, CS16, Fa17 8

if (guess > number)

cout << “Too high.”;

else if (guess < number)

cout << “Too low.”;

else if (guess == number)

cout << “Correct!”;

if (guess > number)

cout << "Too high.";

else if (guess < number)

cout << "Too low.”;

else cout << "Correct!";

i.e. All other possibilities

A Better Way… Using switch
An alternative for constructing

multi-way branches

switch (variable)

{

case variable_value1:

statements;

break;

case variable_value2:

statements;

break;

… … …

default:

statements;

}
10/10/2017 Matni, CS16, Fa17 9

“break” statement is important
– you cannot forget it!

When you see this, it
means I’m demonstrating

code in class AND will
have it available on the

class website!

The Controlling Statement

• A switch statement's controlling statement must return one
of these basic types:

– A bool value

– An int type

– A char type

• switch will not work with strings in the controlling statement.

10/10/2017 Matni, CS16, Fa17 10

Can I Use the break Statement in a Loop?

• Yes, technically, the break statement can be used to exit a loop
(i.e. force it to) before normal termination

• But it’s not good design practice!

– In this class, do NOT use it outside of switch

10/10/2017 Matni, CS16, Fa17 11

Note About Blocks

• Recall: A block is a section of code enclosed by {…} braces

• Variables declared within a block, are local to the block
– An exclusivity feature

– These variable are said to have the block as their scope.

– They can used inside this block and nowhere else!

• Variable names declared inside the block
cannot be re-used outside the block

10/10/2017 Matni, CS16, Fa17 12

Local vs. Global Variables

• Local variables only work in a specified block of statements

– If you try and use them outside this block, they won’t work

• Global variables work in the entire program

• There are standards to each of their use
– Local variables are much preferred as global variables can cause conflicts

in the program

10/10/2017 Matni, CS16, Fa17 13

Local vs. Global Variables – Example

10/10/2017 Matni, CS16, Fa17 14

#include <iostream>
using namespace std;

int main()
{

int age(0);
for (int c = 0; c < 10; c++)
{

cout << age*c << endl;
age += (2*c + 4);

}
return 0;

}

#include <iostream>
using namespace std;

int age(0);
int main()
{

for (int c = 0; c < 10; c++)
{

cout << age*c << endl;
age += (2*c + 4);

}
return 0;

}

Local to main()

Globally declared

Local to the for-loop

Exercise

#include <iostream>
using namespace std;
int main()
{

int k;
for (int j = 0; j < 3; j++)
{

cout << “CS ”;
while (______________)
{

k--;
}
cout << “.”;

}
cout << endl;
return 0;

}
Matni, CS16, Fa17 15

Complete the program to the left if you
want the outputs to be:

CS 98.CS 98.CS 98

(there’s a newline character at the end)

cout << k;

k = 9;

k > 7

10/10/2017 Matni, CS16, Fa17 16

Predefined Functions in C++

• C++ comes with “built-in” libraries of predefined functions

• Example: sqrt function (found in the library cmath)
– Computes and returns the square root of a number

the_root = sqrt(9.0);

– The number 9 is called the argument

• Can variable the_root be either int or double?

10/10/2017 Matni, CS16, Fa17 17

Notes on the cmath Library

• Standard math library in C++

• Contains several useful math functions, like

cos(), sin(), exp(), log(), pow(), sqrt()

• To use it, you must import it at the start of your program

#include <cmath>

– You can find more information on this library at:
http://www.cplusplus.com/reference/cmath/

10/10/2017 Matni, CS16, Fa17 18

http://www.cplusplus.com/reference/cmath/

Other Predefined cmath Functions

• pow(x, y) --- double value = pow(2, -8);

–Returns 2-8 , a double value (value = 0.00390625)

–Arguments are of type double

• sin(x), cos(x), tan(x), etc… --- double value = sin(1.5708);

–Returns sin(p/2) (value = 1) – note it’s in radians

–Argument is of type double

10/10/2017 Matni, CS16, Fa17 19

Other Predefined cmath Functions

• abs(x) --- int value = abs(-8);

– Returns absolute value of argument x

– Return value is of type int

– Argument is of type int

• fabs(x) --- double value = fabs(–8.0);

– Also returns absolute value of argument x

– Return value is of type double

– Argument is of type double

10/10/2017 Matni, CS16, Fa17 20

Random Number Generation: Step 1

• Not true-random, but pseudo-random numbers.
Must #include <cstdlib>

#include <ctime>

• First, seed the random number generator (only need to do this once)
srand(time(0)); //place inside main()

– time() is a pre-defined function in the ctime library: gives current system time
(it gives the current system time)

– It’s used here because it generates a distinctive enough seed, so that rand()
generates a “good enough” random number.

10/10/2017 Matni, CS16, Fa17 21

Random Number Generation: Step 2

• Next, use the rand() function, which returns a random integer that is
greater than or equal to 0 and less than RAND_MAX
(a library-dependent value, but is at least 32767)

int r = rand();

• But what if you want to generate random numbers in other ranges?
Example, between 1 and 6?

10/10/2017 Matni, CS16, Fa17 22

Random Numbers

• Use % and + to scale to the number range you want

• For example to get a random number bounded
from 1 to 6 to simulate rolling a six-sided die:

int die = (rand() % 6) + 1;

10/10/2017 Matni, CS16, Fa17 23

Type Casting

• Recall the problem with integer division in C++:
int total_candy = 9, number_of_people = 4;
double candy_per_person = total_candy / number_of_people;

– candy_per_person will be 2, not 2.25!

• A Type Cast produces a value of one data type from another

– static_cast<double>(total_candy)
produces a double var representing the integer value of total_candy

10/10/2017 Matni, CS16, Fa17 24

Type Cast Example

int total_candy = 9, number_of_people = 4;
double candy_per_person =
static_cast<double>(total_candy)/number_of_people;

– The numerator of this division is now 9.0

– So, candy_per_person is now 2.25

– The following would also work:
candy_per_person = total_candy / static_cast<double>(number_of_people);

– This, however, would not! (why?)
candy_per_person = static_cast<double>(total_candy / number_of_people);

10/10/2017 Matni, CS16, Fa17 25

ANS: Because, in this example, integer division occurs before type cast!

Question

• Can you determine the value of d?

int a(11), b(2);
double d = a / b;

• And now? Can you determine the value of d?

double d = 11 / 2;

• What about this value of d?

double d = 11.0 / 2.0;

10/10/2017 Matni, CS16, Fa17 26

Integer division occurs

before type cast!

10/10/2017 Matni, CS16, Fa17 27

FUNCTIONS in C++

Programmer-Defined Functions

• There are 2 necessary components for using functions in C++

• Function declaration (or function prototype)
– Just like declaring variables
– Must be placed outside the main(), usually just before it
– Must be placed before the function is defined & called

• Function definition
– This is where you define the function itself (all the details go here)
– Must be place outside the main()
– Can be before main() or after it, often placed after it

10/10/2017 Matni, CS16, Fa17 28

Block Placements for Functions

10/10/2017 29

Function Declaration

main()
where the function gets called

Function Definition

Function Declaration

main()
where the function gets called

Function Definition

main()
where the function gets called

Function Definition AND
Declaration (in one)

main()
where the function gets called

Function Definition Function Declaration

main()
where the function gets called

Function Definition

Most widely-used scheme,
esp. with large programs

Function Declaration

• Shows how the function is called from main() or from other functions

• Must appear in the code before the function can be called

• Syntax:
Type_returned Function_Name(Parameter_List);
//Comment describing what function does

E.g:
double interestOwed(double principle, double rate);
//Calculates the interest owed on a loan

10/10/2017 Matni, CS16, Fa17 30

;

Needed for
declaration statement

Function Definition

• Describes how the function does its task

• Can appear before or after the function is called

• Syntax:
Type_returned Function_Name(Parameter_List)

{
//code to make the function work

}

10/10/2017 Matni, CS16, Fa17 31

Example of a Simple Function in C++

#include <iostream>
using namespace std;

int sum2nums(int num1, int num2); // returns the sum of 2 numbers

int main () {
int a(3), b(5);
int sum = sum2nums(a, b);
cout << sum << endl;
return 0;

}

int sum2nums(int num1, int num2) {
return (num1 + num2);

}

10/10/2017 Matni, CS16, Fa17 32

Call

Definition

YOUR TO-DOs

 Finish reading up Chapter 4 and 5

 Turn in HW2

 Finish Lab2 by FRIDAY AT NOON (Fri, 10/13)

 Visit Prof’s and TAs‘ office hours if you need help!

 Send your mom a text

10/10/2017 Matni, CS16, Fa17 33

10/10/2017 Matni, CS16, Fa17 34

