
Solving Problems
Flow Control in C++
CS 16: Solving Problems with Computers I

Lecture #3

Ziad Matni
Dept. of Computer Science, UCSB

A Word About Registration for CS16

FOR THOSE OF YOU NOT YET REGISTERED:
• There’s still a waitlist to add this class!

– We now have a few openings and I will go by the prioritized waitlist

WAITLISTED STUDENTS MUST SEE ME AFTER CLASS

10/5/2017 Matni, CS16, Fa17 2

Lecture Outline

• Problem Solving

• Simple Flow of Control
• IF/ELSE Statements
• Loops (While ; Do-While ; For)
• Multiway Branching and the switch command
• Local vs. Global Variables

• Some Notes on Program Style and Errors

10/5/2017 Matni, CS16, Sp17 3

How Does One Solve Problems?

Understand the problem
Devise a plan

Carry out the plan
Look back and re-assess

10/5/2017 Matni, CS16, Fa17 4

Strategies

Ask questions!

– What do I know about the problem?

– What is the information that I have to process in order the
find the solution?

– What does the solution look like?

– What sort of special cases exist?

– How will I recognize that I have found the solution?

10/5/2017 Matni, CS16, Fa17 5

Strategies

Ask questions! Don’t reinvent the wheel!

Similar problems come up again and again in different guises

A good programmer recognizes a task that has been solved
before and can research the solution

However, a good programmer does not plagiarize…

10/5/2017 Matni, CS16, Fa17 6

Strategies

Divide and Conquer!

Break up a large problem into smaller units
and solve each smaller problem

Applies the concept of abstraction

The divide-and-conquer approach can be applied over and over
again until each subtask is manageable

10/5/2017 Matni, CS16, Fa17 7

Computer Problem-Solving

Analysis and Specification Phase
Analyze the problem
Specify the details

Algorithm Development Phase
Develop an algorithm
Test your algorithm

Implementation Phase
Code your algorithm
Test your code

Maintenance Phase
Use the program
Maintain the program

Can you see
a recurring theme?

10/5/2017 Matni, CS16, Fa17 8

Developing Software Products

• As a business product
– Software is “made” (developed) to meet market needs

• Needs resources and planning
– Software needs to be

programmed, documented, tested, fixed/maintained

• There is a process to everything you need to do!
– A complex task – a problem to solve – needs a plan, an algorithm

10/5/2017 Matni, CS16, Fa17 9

Systems Development Life Cycle (SDLC)
A structured approach to software development:

GOAL: A software development process that leads to

a high quality system that

meets or exceeds customer expectations,

within time and cost estimates,

works effectively and efficiently in the current and

planned infrastructure,

and is cheap to maintain and cost effective to enhance.
10/5/2017 Matni, CS16, Fa17 10

Software Systems Development:
Waterfall Model

Requirement
Analysis

(Both Business
&Tech.)

Systems
Design

Implementation
(Programming)

Testing

Deployment
&

Maintenance
10/5/2017 Matni, CS16, Fa17 11

10/5/2017 Matni, CS16, Fa17 12

Flow of Control

• Another way to say: The order in which statements get executed

• Branch: (verb) How a program chooses between 2 alternatives
– Usual way is by using an if-else statement

10/5/2017 Matni, CS16, Sp17 13

if (Boolean expression)
true statement

else
false statement

Implementing IF/ELSE Statements in C++
• As simple as:

if (income > 30000)
{

taxes_owed = 0.30 * 30000;
}
else
{

taxes_owed = 0.20 * 30000;
}

10/5/2017 Matni, CS16, Sp17 14

IF/ELSE in C++
• To do additional things in a branch, use the { } brackets to keep all the statements together

if (income > 30000)
{
taxes_owed = 0.30 * 30000;
category = “RICH”;
alert_irs = true;

} // end IF part of the statement
else
{
taxes_owed = 0.20 * 30000;
category = “POOR”;
alert_irs = false;

} // end ELSE part of the statement

10/5/2017 Matni, CS16, Sp17 15

Groups of statements
(sometimes called a block)
kept together with { … }

Examples of IF Statements

if ((x >= 3) && (x < 6))
y = 10;

• The variable y will be assigned 10 only if x is equal to 3, 4, or 5

if !(x > 5) y = 10;
• The variable y will be assigned 10 if x is NOT larger than 5

(i.e. if x is 4 or smaller)
– DESIGN PRO-TIP: Unless you really have to,

avoid the NOT logic operator when designing conditional statements

10/5/2017 Matni, CS16, Sp17 16

Beware: = vs ==

• ' = ' is the assignment operator '= = ' is the equality operator
– Used to assign values to variables – Used to compare values
– Example: x = 3; – Example: if (x == 3) y = 0;

• The compiler will actually accept this logical error: if (x = 3) y = 0;
– Why?
– It’s an error of logic, not of syntax
– But it stores 3 in x instead of comparing x and 3
– Since the result is 3 (non-zero), the expression is true, so y becomes 0

10/5/2017 Matni, CS16, Sp17 17

Simple Loops 1: while

• We use loops when an action must be repeated
• C++ includes several ways to create loops

– while, for, do…while, etc…

• The while loop example:
int count_down = 3;
while (count_down > 0)
{

cout << "Hello ";
count_down -= 1;

}10/5/2017 18

Output is:
Hello Hello Hello

Simple Loops 2: do-while
• Executes a block of code at least once, and then repeatedly executes the

block depending on a given Boolean condition at the end of the block.
– So, unlike the while loop, the Boolean expression is checked after

the statements have been executed

int flag = 1;
do
{

cout << "Hello ";
flag -= 1;

}
while (flag > 0);

10/5/2017 19

Why is there a
semicolon here??!?

Output is:
Hello

Matni, CS16, Sp17

Simple Loops 3: for
• Similar to a while loop, but presents parameters differently.
• Allows you to initiate a counting variable, a check condition,

and a way to increment your counter all in one line.

for (counter declaration; check condition statement; increment rule) {…}

for (int count = 2; count < 5; count++)
{

cout << "Hello ";
}

10/5/2017 Matni, CS16, Sp17

Output is:
Hello Hello Hello

Increments and Decrements by 1

In C++ you can increment-by-1 like this:
a++

or like this:
++a

Similarly, you can decrement by:
a-- or --a

10/5/2017 Matni, CS16, Sp17 21

more common 

Some Cool Uses of x++

• In a while loop, you always need to increment a counter var.
Example:

int max = 0;
while (max < 4)
{

cout << “hi” << endl;
max++;

}

10/5/2017 Matni, CS16, Fa17 22

What will this print out?

Some Cool Uses of x++

• You can make a slight change and save a line of code!
Example:

int max = 0;
while (max++ < 4)
{

cout << “hi” << endl;
}

10/5/2017 Matni, CS16, Fa17 23

When to use x++ vs ++x

10/5/2017 Matni, CS16, Fa17 24

• x++ will assess x then increment it
• ++x will increment x first, then assess it

• 95% of the time, you will use the first one

• In while statements, it makes a difference
• In for statements, it won’t make a difference

Examples

10/5/2017 Matni, CS16, Sp17 25

for (int c = 0; c < 4; c++)
cout << “hi” << endl;

for (int c = 0; c < 4; ++c)
cout << “hi” << endl;

int max = 0;
while (max++ < 4)
{

cout << “hi” << endl;
}

int max = 0;
while (++max < 4)
{

cout << “hi” << endl;
}

Prints “hi” 4 times

Prints “hi” 4 times

Prints “hi” 3 times

Infinite Loops
• Loops that never stop – to be avoided!

– Your program will either “hang” or just keep spewing outputs for ever

• The loop body should contain a line that will eventually cause the Boolean
expression to become false (to make the loop to end)

• Example: Goal: Print all positive odd numbers less than 6
x = 1;
while (x != 6)
{
cout << x << endl;
x = x + 2;

}10/5/2017 Matni, CS16, Sp17 26

while (x < 6)

What is the problem with this code?

What simple fix can undo this bad design?

x will never be 6! Infinite Loop!

Using for-loops For Sums

• A common task is reading a list of numbers and computing the sum
– Pseudocode for this task might be:

sum = 0;
repeat the following this_many times

get input for “next”
sum = sum + next

end of loop

• Let’s look at it as a for-loop in C++ …

10/5/2017 Matni, CS16, Fa16 27

Using for-loops For Sums

• The pseudocode from the previous slide can be implemented as

int sum = 0;
for(int count = 0; count < 10; count++)

{
cin >> next;
sum = sum + next;

}

• Note that “sum” must be initialized prior to the loop body!
– Why?

Matni, CS16, Fa16 2810/5/2017

Using for-loops For Products
• Forming a product is very similar to the sum example seen earlier

int product = 1;
for(int count = 0; count < 10; count++)
{

cin >> next;
product = product * next;

}

• Note that “product” must be initialized prior to the loop body
– Product is initialized to 1, not 0!

Matni, CS16, Fa16 2910/5/2017

Ending a While Loop

• A for-loop is generally the choice when there is a predetermined number of iterations
• When you DON’T have a predetermined number of iterations,

you will want to use while loops

The are 3 common methods to END a while loop:
• List ended with a sentinel value: Using a particular value or calculation to signal the end
• Ask before iterating: Ask if the user wants to continue before each iteration
• Running out of input: Using the eof function to indicate the end of a file

(more on this when we discuss file I/Os)

Matni, CS16, Fa16 910/5/2017

List Ended With a Sentinel Value
cout << "Enter a list of positive integers.\n"

<< "Place a negative integer after the list to quit.\n";
sum = 0;
cin >> number;
while (number > 0)
{

cout << “The double of that is: ” << 2*number << endl;
cin >> number;

}

– Notice that the sentinel value is read, but not processed at the end

10/5/2017 Matni, CS16, Fa16 31

Ask Before Iterating

sum = 0;
char ans;

cout << "Are there numbers in the list (Y/N)?";
cin >> ans;

while ((ans == 'Y') || (ans == 'y'))
{

//statements to read and process the number

cout << "Are there more numbers(Y/N)? ";
cin >> ans;

}

10/5/2017 Matni, CS16, Fa16 32

Nested Loops

• The body of a loop may contain any kind of statement,
including another loop

• When loops are nested, all iterations of the inner loop
are executed for each iteration of the outer loop

• ProTip: Give serious consideration to making the inner loop a function call
to make it easier to read your program
– More on functions later…

10/5/2017 Matni, CS16, Fa16 33

Example of a Nested Loop

• You want to collect the total grades of 100 students in a class

• Each student has multiple scores
– Example: multiple homeworks, multiple quizzes, etc…

• You go through each student – one at a time – and get their scores
– You calculate a sub-total grade for each student

• Then after collecting every student score, you calculate a grand total grade
of the whole class and a class average (grand total / no. of students)

10/5/2017 Matni, CS16, Fa16 34

int students(100);
double grade(0), subtotal(0), grand_total(0);
for (int count = 0; count < students; count++) {

cout << “Starting with student number: ” << count << endl;
cout <<
“Enter grades. To move to the next student, enter a negative number.\n”
cin >> grade;
while (grade >= 0) {

subtotal = subtotal + grade;
cin >> grade;

} // end while loop
cout <<
“Total grade count for student ” << count << “is ” << subtotal << endl;
grand_total = grand_total + subtotal;
subtotal = 0;

} // end for loop

cout << “Average grades for all students= ” << grand_total / students <<
endl;

Example of a
Nested Loop

YOUR TO-DOs

 Finish reading up to (& including) Chapter 3
 Finish Lab1 by TOMORROW AT NOON (Fri, 10/6)

 HW2 is now ready
 Visit Prof’s and TAs‘ office hours if you need help!

 Eat all your vegetables

10/5/2017 Matni, CS16, Fa17 36

10/5/2017 Matni, CS16, Fa17 37

	Solving Problems�Flow Control in C++
	A Word About Registration for CS16
	Lecture Outline
	How Does One Solve Problems?
	Strategies
	Strategies
	Strategies
	Computer Problem-Solving
	Developing Software Products
	Systems Development Life Cycle (SDLC)
	Software Systems Development: �Waterfall Model
	Slide Number 12
	Flow of Control
	Implementing IF/ELSE Statements in C++
	IF/ELSE in C++
	Examples of IF Statements
	Beware: = vs ==
	Simple Loops	 1: while
	Simple Loops	 2: do-while
	Simple Loops	3: for
	Increments and Decrements by 1
	Some Cool Uses of x++
	Some Cool Uses of x++
	When to use x++ vs ++x
	Examples
	Infinite Loops
	Using for-loops For Sums
	Using for-loops For Sums
	Using for-loops For Products
	Ending a While Loop
	List Ended With a Sentinel Value
	Ask Before Iterating
	Nested Loops
	Example of a Nested Loop
	Example of a Nested Loop
	YOUR TO-DOs
	Slide Number 37

